Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Vis ; 24: 733-745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581280

RESUMO

Purpose: To evaluate the potential of a poly(lactic-co-glycolic acid) (PLGA)-based slow release formulation of glial cell line-derived neurotrophic factor (GDNF) alone or in combination with melatonin to rescue photoreceptors in a mouse model of retinal degeneration. Methods: GDNF and GDNF/melatonin-loaded PLGA microspheres (MSs) were prepared using a solid-in-oil-in-water emulsion solvent extraction-evaporation technique. A combination of PLGA and vitamin E (VitE) was used to create the microcarriers. The structure, particle size, encapsulation efficiency, and in vitro release profile of the microparticulate formulations were characterized. Microparticulate systems (non-loaded, GDNF, and GDNF/melatonin-loaded MSs) were administered intravitreally to 3-week-old rhodopsin knockout mice (rho (-/-); n=7). The functional neuroprotective effect was assessed with electroretinography at 6, 9, and 12 weeks old. The rescue of the structure was determined with photoreceptor quantification at 12 weeks (9 weeks after administration of MSs). Immunohistochemistry for photoreceptor, glial, and proliferative markers was also performed. Results: The microspheres were able to deliver GDNF or to codeliver GDNF and melatonin in a sustained manner. Intravitreal injection of GDNF or GDNF/melatonin-loaded MSs led to partial functional and structural rescue of photoreceptors compared to blank microspheres or vehicle. No significant intraocular inflammatory reaction was observed after intravitreal injection of the microspheres. Conclusions: A single intravitreal injection of GDNF or GDNF/melatonin-loaded microspheres in the PLGA/VitE combination promoted the rescue of the photoreceptors in rho (-/-) mice. These intraocular drug delivery systems enable the efficient codelivery of therapeutically active substances for the treatment of retinal diseases.


Assuntos
Preparações de Ação Retardada/farmacocinética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacocinética , Melatonina/farmacocinética , Retina/efeitos dos fármacos , Degeneração Retiniana/terapia , Rodopsina/genética , Animais , Preparações de Ação Retardada/química , Modelos Animais de Doenças , Combinação de Medicamentos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Eletrorretinografia , Expressão Gênica , Injeções Intravítreas , Camundongos , Camundongos Knockout , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Rodopsina/agonistas , Rodopsina/deficiência , Vitamina E/química , Corpo Vítreo
2.
J Ocul Pharmacol Ther ; 33(5): 412-422, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28441076

RESUMO

PURPOSE: Degenerative diseases of the retina, such as retinitis pigmentosa and age-related macular degeneration, are characterized by the irreversible loss of photoreceptors. Several growth factors, including glial cell derived neurotrophic factor (GDNF), have been shown to rescue retinal neurons. An alternative strategy to direct GDNF administration is its induction in host retina by small molecules. Here we studied the ability of a novel small molecule GSK812 to induce GDNF in vitro/in vivo and rescue photoreceptors. METHODS: GDNF induction in vitro was assessed in human ARPE-19, human retinal progenitor cells (RPCs) and mouse pluripotent cell-derived eyecups. For time course pharmacokinetic and GDNF induction studies in C57Bl/6 mice, GSK812 sustained release formulation was injected intravitreally. The same delivery approach was used in the rhodopsin knockout mice and Royal College of Surgeon (RCS) rats to assess long-term GDNF induction and photoreceptor rescue. RESULTS: The suspension provided sustained GSK812 delivery with 28 µg of drug remaining in the eye 2 weeks after a single injection. GSK812 suspension injection in C57Bl/6 mice resulted in significant upregulation of GDNF mRNA (>1.8-fold) and protein levels (>2.8-fold). Importantly, GSK812 treatment resulted in outer nuclear layer preservation in rho-/- mice with a 2-fold difference in photoreceptor number. In the RCS rat, the GSK812 injection provided long-term rescue of photoreceptors and outer segments, accompanied by function preservation as well. CONCLUSIONS: GSK812 is a potent neuroprotectant that can induce GDNF in normal and diseased retina. This induction results in photoreceptor rescue in 2 models of retinal degeneration.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Fármacos Neuroprotetores/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/administração & dosagem , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Bibliotecas de Moléculas Pequenas/administração & dosagem
3.
Transl Vis Sci Technol ; 4(5): 6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26425402

RESUMO

PURPOSE: The development of photoreceptor replacement therapy for retinal degenerative disorders requires the identification of the optimal cell source and immunosuppressive regimen in a large animal model. Allotransplants are not acutely rejected in swine subretinal space, although it is not known if survival can be improved with immunosuppression. Here we investigated the survival and integration of expanded pig retinal progenitor cells (pRPCs) in normal recipients with and without transient anti-inflammatory suppression. METHODS: pRPCs were derived from the neural retina of E60 GFP transgenic pigs, expanded for six passages, characterized, and transplanted into the subretinal space of 12 pigs. Six recipients received a single intravitreal injection of rapamycin and dexamethasone. RESULTS: pRPCs expressed the photoreceptor development genes Sox2, Pax6, Lhx2, Crx, Nrl, and Recoverin in vitro. Transplanted cells were identified in 9 out of 12 recipients 4 weeks after the injection. pRPCs integrated primarily into the photoreceptor inner segment layer and outer nuclear layer with single cells present in the inner nuclear layer. Donor cells remained recoverin-positive and acquired rhodopsin. We did not observe any signs of graft proliferation. The immunosuppression did not affect the survival or distribution of grafts. No macrophage infiltration or loss of retinal structure was observed in either group. CONCLUSIONS: Local immunosuppression with rapamycin and dexamethasone does not improve the outcome of pRPC allotransplantation into the subretinal space. TRANSLATIONAL RELEVANCE: Survival and integration of pRPC together with the lack of graft proliferation suggests that allogeneic RPC transplantation without transient immunosuppression is a favorable approach for photoreceptor cell replacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...