Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 110(10): 1620-1622, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32378452

RESUMO

Black Sigatoka disease, caused by the fungus Pseudocercospora fijiensis, is one of the most devastating diseases of banana around the world. Fungicide applications are the primary tool used to manage black Sigatoka, but fungicide resistance in P. fijiensis, as in other fungal pathogens, is one of the major limitations in the efficient management and prevention of this disease. In the current study, we present the draft genome of P. fijiensis strain IIL-20, the first genomic sequence published from a strain of this fungus isolated in North America. Bioinformatic analysis showed putative genes involved in fungus virulence and fungicide resistance. These findings may lead us to a better understanding of the molecular pathogenesis of this fungal pathogen and also to the discovery of the mechanisms conferring fungicide resistance.


Assuntos
Ascomicetos/genética , Fungicidas Industriais/farmacologia , Musa , América do Norte , Doenças das Plantas
2.
Arch Virol ; 165(6): 1485-1488, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248294

RESUMO

The GenBank database contains over 2580 complete genome sequences from bacteriophages. However, limited reports are available concerning phages can that lyse members of Pseudomonas syringae, although this is a widespread bacterial species that can infect almost 200 plant species. In the present study, we isolated and characterized a new Siphoviridae phage, named "Pseudomonas phage vB_PsyS_Phobos" (for brevity, referred to here as Phobos). To our knowledge, this is one of the first genome sequences reported for a phage with lytic activity against P. syringae pv. syringae. The genome of Phobos is dsDNA of 56,734 bp with a GC content of 63.3%, containing 65 ORFs. Genome analysis revealed that Phobos is a novel lytic phage with unique genomic features and low similarity to other phages, suggesting that Phobos represents a new phage genus. Genome sequencing did not reveal sequences with significant similarity to known virulence factors, antibiotic resistance genes, potential immunoreactive allergens, or lysogeny-related proteins, suggesting suggests that phage Phobos is strictly lytic. Therefore, Phobos may be suitable for formulation as a biocontrol agent against P. syringae pv. syringae.


Assuntos
Fagos de Pseudomonas/genética , Pseudomonas syringae/virologia , Siphoviridae/genética , Composição de Bases , DNA Viral/genética , Fases de Leitura Aberta , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Análise de Sequência de DNA , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...