Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096160

RESUMO

Kin-recognition is observed across diverse species forming an important behavioral adaptation influencing organismal interactions. In many species, the molecular mechanisms involved are difficult to characterize, but in the nematode Pristionchus pacificus molecular components regulating its kin-recognition system have been identified. These determine its predatory behaviors towards other con-specifics which prevents the killing and cannibalization of kin. Importantly, their impact on other interactions including collective behaviors is unknown. Here, we explored a high altitude adapted clade of this species which aggregates abundantly under laboratory conditions, to investigate the influence of the kin-recognition system on their group behaviours. By utilizing pairwise aggregation assays between distinct strains of P. pacificus with differing degrees of genetic relatedness, we observe aggregation between kin but not distantly related strains. In assays between distantly related strains, the aggregation ratio is frequently reduced. Furthermore, abolishing predation behaviors through CRISPR/Cas9 induced mutations in Ppa-nhr-40 result in rival strains successfully aggregating together. Finally, as Caenorhabditis elegans are found naturally occurring with P. pacificus, we also explored aggregation events between these species. Here, aggregates were dominated by P. pacificus with the presence of only a small number of predators proving sufficient to disrupt C. elegans aggregation dynamics. Thus, aggregating strains of P. pacificus preferentially group with kin, revealing competition and nepotism as previously unknown components influencing collective behaviors in nematodes.


Assuntos
Nematoides , Rabditídios , Animais , Caenorhabditis elegans/genética , Comportamento de Massa , Comportamento Predatório , Nematoides/genética , Rabditídios/genética
2.
PLoS Biol ; 21(8): e3002270, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590316

RESUMO

The widespread occurrence of phenotypic plasticity across all domains of life demonstrates its evolutionary significance. However, how plasticity itself evolves and how it contributes to evolution is poorly understood. Here, we investigate the predatory nematode Pristionchus pacificus with its feeding structure plasticity using recombinant-inbred-line and quantitative-trait-locus (QTL) analyses between natural isolates. We show that a single QTL at a core developmental gene controls the expression of the cannibalistic morph. This QTL is composed of several cis-regulatory elements. Through CRISPR/Cas-9 engineering, we identify copy number variation of potential transcription factor binding sites that interacts with a single intronic nucleotide polymorphism. Another intronic element eliminates gene expression altogether, mimicking knockouts of the locus. Comparisons of additional isolates further support the rapid evolution of these cis-regulatory elements. Finally, an independent QTL study reveals evidence for parallel evolution at the same locus. Thus, combinations of cis-regulatory elements shape plastic trait expression and control nematode cannibalism.


Assuntos
Adaptação Fisiológica , Variações do Número de Cópias de DNA , Canibalismo , Íntrons , Fenótipo
3.
Curr Biol ; 33(9): R361-R363, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160094

RESUMO

Cannabinoids can enhance the preference for calorific foods through hedonic feeding behaviors. A new study identifies and characterizes these indulgent behaviors in the nematode Caenorhabditis elegans, providing insights into the mechanisms of their regulation.


Assuntos
Meio Ambiente , Neurociências , Animais , Caenorhabditis elegans , Comportamento Alimentar , Alimentos
4.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469861

RESUMO

Transforming growth factor-ß (TGF-ß) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-ß signaling in nine nematode species and revealed striking variability in TGF-ß gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-ß components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-ß with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-ß mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-ß signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.


Assuntos
Proteínas de Caenorhabditis elegans , Rabditídios , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Redes Reguladoras de Genes , Rabditídios/genética , Rabditídios/metabolismo
5.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35693893

RESUMO

Transgenes are widely used throughout molecular biology for numerous applications. In Caenorhabditis elegans, stable transgenes are usually generated by microinjection into the germline establishing extrachromosomal arrays. Furthermore, numerous technologies exist to integrate transgenes into the C. elegans genome. In the nematode Pristionchus pacificus, transgenes are possible, however, their establishment is less efficient and dependent on the formation of complex arrays containing the transgene of interest and host carrier DNA. Additionally, genomic integration has only been reported via biolistic methods. Here we describe a simple technique using UV irradiation to facilitate the integration of transgenes into the P. pacificus genome.

6.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433565

RESUMO

Resource polyphenisms, where single genotypes produce alternative feeding strategies in response to changing environments, are thought to be facilitators of evolutionary novelty. However, understanding the interplay between environment, morphology, and behavior and its significance is complex. We explore a radiation of Pristionchus nematodes with discrete polyphenic mouth forms and associated microbivorous versus cannibalistic traits. Notably, comparing 29 Pristionchus species reveals that reproductive mode strongly correlates with mouth-form plasticity. Male-female species exhibit the microbivorous morph and avoid parent-offspring conflict as indicated by genetic hybrids. In contrast, hermaphroditic species display cannibalistic morphs encouraging competition. Testing predation between 36 co-occurring strains of the hermaphrodite P. pacificus showed that killing inversely correlates with genomic relatedness. These empirical data together with theory reveal that polyphenism (plasticity), kin recognition, and relatedness are three major factors that shape cannibalistic behaviors. Thus, developmental plasticity influences cooperative versus competitive social action strategies in diverse animals.

7.
Genetics ; 216(4): 947-956, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33060138

RESUMO

A lack of appropriate molecular tools is one obstacle that prevents in-depth mechanistic studies in many organisms. Transgenesis, clustered regularly interspaced short palindromic repeats (CRISPR)-associated engineering, and related tools are fundamental in the modern life sciences, but their applications are still limited to a few model organisms. In the phylum Nematoda, transgenesis can only be performed in a handful of species other than Caenorhabditis elegans, and additionally, other species suffer from significantly lower transgenesis efficiencies. We hypothesized that this may in part be due to incompatibilities of transgenes in the recipient organisms. Therefore, we investigated the genomic features of 10 nematode species from three of the major clades representing all different lifestyles. We found that these species show drastically different codon usage bias and intron composition. With these findings, we used the species Pristionchus pacificus as a proof of concept for codon optimization and native intron addition. Indeed, we were able to significantly improve transgenesis efficiency, a principle that may be usable in other nematode species. In addition, with the improved transgenes, we developed a fluorescent co-injection marker in P. pacificus for the detection of CRISPR-edited individuals, which helps considerably to reduce associated time and costs.


Assuntos
Sistemas CRISPR-Cas , Uso do Códon , Edição de Genes/métodos , Rabditídios/genética , Transgenes , Animais , Edição de Genes/normas , Íntrons
8.
ISME J ; 14(7): 1911, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246130

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
PLoS Genet ; 16(4): e1008687, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282814

RESUMO

Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has potential to shed light on the origin of novel traits and adaptation to environmental change. However, molecular studies are scarce, and little is known about molecular mechanisms associated with plasticity. We investigated the gene regulatory network controlling predatory vs. non-predatory dimorphism in the nematode Pristionchus pacificus and found that it consists of genes of extremely different age classes. We isolated mutants in the conserved nuclear hormone receptor nhr-1 with previously unseen phenotypic effects. They disrupt mouth-form determination and result in animals combining features of both wild-type morphs. In contrast, mutants in another conserved nuclear hormone receptor nhr-40 display altered morph ratios, but no intermediate morphology. Despite divergent modes of control, NHR-1 and NHR-40 share transcriptional targets, which encode extracellular proteins that have no orthologs in Caenorhabditis elegans and result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. Major morphological changes in this gland cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations. Thus, the origin of feeding plasticity involved novelty at the level of genes, cells and behavior.


Assuntos
Evolução Molecular , Proteínas de Helminto/genética , Comportamento Predatório , Receptores Citoplasmáticos e Nucleares/genética , Rabditídios/genética , Animais , Sequência Conservada , Redes Reguladoras de Genes , Proteínas de Helminto/metabolismo , Boca/anatomia & histologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Rabditídios/anatomia & histologia , Rabditídios/fisiologia , Análise de Célula Única
10.
ISME J ; 14(6): 1494-1507, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32152389

RESUMO

Although the microbiota is known to affect host development, metabolism, and immunity, its impact on host behavior is only beginning to be understood. In order to better characterize behavior modulation by host-associated microorganisms, we investigated how bacteria modulate complex behaviors in the nematode model organism Pristionchus pacificus. This nematode is a predator that feeds on the larvae of other nematodes, including Caenorhabditis elegans. By growing P. pacificus on different bacteria and testing their ability to kill C. elegans, we reveal large differences in killing efficiencies, with a Novosphingobium species showing the strongest enhancement. This enhanced killing was not accompanied by an increase in feeding, which is a phenomenon known as surplus killing, whereby predators kill more prey than necessary for sustenance. Our RNA-seq data demonstrate widespread metabolic rewiring upon exposure to Novosphingobium, which facilitated screening of bacterial mutants with altered transcriptional responses. We identified bacterial production of vitamin B12 as an important cause of such enhanced predatory behavior. Although vitamin B12 is an essential cofactor for detoxification and metabolite biosynthesis, shown previously to accelerate development in C. elegans, supplementation with this enzyme cofactor amplified surplus killing in P. pacificus, whereas mutants in vitamin B12-dependent pathways reduced surplus killing. By demonstrating that production of vitamin B12 by host-associated microbiota can affect complex host behaviors, we reveal new connections between animal diet, microbiota, and nervous system.


Assuntos
Bactérias/metabolismo , Nematoides/fisiologia , Vitamina B 12/metabolismo , Animais , Caenorhabditis elegans/microbiologia , Microbiota , Nematoides/microbiologia , Comportamento Predatório , Vitaminas/metabolismo
11.
Proc Biol Sci ; 286(1912): 20191089, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31575374

RESUMO

Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.


Assuntos
Cílios/fisiologia , Nematoides/fisiologia , Comportamento Predatório , Animais , Caenorhabditis elegans , Mutação , Fenótipo , Rabditídios , Transdução de Sinais
12.
Science ; 364(6435): 86-89, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948551

RESUMO

Self-recognition is observed abundantly throughout the natural world, regulating diverse biological processes. Although ubiquitous, often little is known of the associated molecular machinery, and so far, organismal self-recognition has never been described in nematodes. We investigated the predatory nematode Pristionchus pacificus and, through interactions with its prey, revealed a self-recognition mechanism acting on the nematode surface, capable of distinguishing self-progeny from closely related strains. We identified the small peptide SELF-1, which is composed of an invariant domain and a hypervariable C terminus, as a key component of self-recognition. Modifications to the hypervariable region, including single-amino acid substitutions, are sufficient to eliminate self-recognition. Thus, the P. pacificus self-recognition system enables this nematode to avoid cannibalism while promoting the killing of competing nematodes.


Assuntos
Canibalismo , Peptídeos/fisiologia , Comportamento Predatório/fisiologia , Rabditídios/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Peptídeos/química , Peptídeos/genética , Domínios Proteicos , Rabditídios/metabolismo , Especificidade da Espécie
13.
Sci Rep ; 7(1): 17550, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242625

RESUMO

Social behaviours are frequently utilised for defence and stress avoidance in nature. Both Caenorhabditis elegans and Pristionchus pacificus nematodes display social behaviours including clumping and bordering, to avoid hyperoxic stress conditions. Additionally, both species show natural variation in social behaviours with "social" and "solitary" strains. While the single solitary C. elegans N2 strain has evolved under laboratory domestication due to a gain-of-function mutation in the neuropeptide receptor gene npr-1, P. pacificus solitary strains are commonplace and likely ancestral. P. pacificus therefore provides an opportunity to further our understanding of the mechanisms regulating these complex behaviours and how they evolved within an ecologically relevant system. Using CRISPR/Cas9 engineering, we show that Ppa-npr-1 has minimal influence on social behaviours, indicating independent evolutionary pathways compared to C. elegans. Furthermore, solitary P. pacificus strains show an unexpected locomotive response to hyperoxic conditions, suggesting a novel regulatory mechanism counteracting social behaviours. By utilising both forward and reverse genetic approaches we identified 10 genes of the intraflagellar transport machinery in ciliated neurons that are essential for this inhibition. Therefore, a novel cilia-mediated environmental input adds an additional level of complexity to the regulation of hyperoxia-induced social behaviours in P. pacificus, a mechanism unknown in C. elegans.


Assuntos
Cílios/metabolismo , Meio Ambiente , Oxigênio/metabolismo , Rabditídios/metabolismo , Comportamento Social , Alelos , Animais , Mutação , Estresse Oxidativo , Fenótipo , Rabditídios/genética
14.
J Vis Exp ; (115)2016 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-27684744

RESUMO

This protocol provides multiple methods for the analysis and quantification of predatory feeding behaviors in nematodes. Many nematode species including Pristionchus pacificus display complex behaviors, the most striking of which is the predation of other nematode larvae. However, as these behaviors are absent in the model organism Caenorhabditis elegans, they have thus far only recently been described in detail along with the development of reliable behavioral assays (1). These predatory behaviors are dependent upon phenotypically plastic but fixed mouth morphs making the correct identification and categorization of these animals essential. In P. pacificus there are two mouth types, the stenostomatous and eurystomatous morphs (2), with only the wide mouthed eurystomatous containing an extra tooth and being capable of killing other nematode larvae. Through the isolation of an abundance of size matched prey larvae and subsequent exposure to predatory nematodes, assays including both "corpse assays" and "bite assays" on correctly identified mouth morph nematodes are possible. These assays provide a means to rapidly quantify predation success rates and provide a detailed behavioral analysis of individual nematodes engaged in predatory feeding activities. In addition, with the use of a high-speed camera, visualization of changes in pharyngeal activity including tooth and pumping dynamics are also possible.


Assuntos
Nematoides , Comportamento Predatório , Animais , Caenorhabditis elegans , Comportamento Alimentar , Boca
15.
BMC Res Notes ; 9: 142, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944260

RESUMO

BACKGROUND: The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. RESULTS: To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66%) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. CONCLUSIONS: Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution.


Assuntos
Caenorhabditis elegans/genética , Trato Gastrointestinal/metabolismo , Genes de Helmintos , Interações Hospedeiro-Patógeno/genética , Nematoides/genética , Transcriptoma , Animais , Sequência de Bases , Caenorhabditis elegans/microbiologia , Sequência Conservada , Escherichia coli/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Proteínas Hedgehog/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular , Nematoides/microbiologia , Transdução de Sinais , Especificidade da Espécie
16.
Chromosoma ; 125(4): 725-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26661737

RESUMO

Nematodes of the genus Strongyloides are important parasites of vertebrates including man. Currently, little is known about their germline organization or reproductive biology and how this influences their parasitic life strategies. Here, we analyze the structure of the germline in several Strongyloides and closely related species and uncover striking differences in the development, germline organization, and fluid dynamics compared to the model organism Caenorhabditis elegans. With a focus on Strongyloides ratti, we reveal that the proliferation of germ cells is restricted to early and mid-larval development, thus limiting the number of progeny. In order to understand key germline events (specifically germ cell progression and the transcriptional status of the germline), we monitored conserved histone modifications, in particular H3Pser10 and H3K4me3. The evolutionary significance of these events is subsequently highlighted through comparisons with six other nematode species, revealing underlying complexities and variations in the development of the germline among nematodes.


Assuntos
Células Germinativas/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Processos de Determinação Sexual/fisiologia , Strongyloides/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Proliferação de Células , Metilação , Reprodução/fisiologia , Strongyloides/citologia , Strongyloides/genética
17.
J Exp Biol ; 218(Pt 9): 1306-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767144

RESUMO

Behavioural innovation and morphological adaptation are intrinsically linked but their relationship is often poorly understood. In nematodes, a huge diversity of feeding morphologies and behaviours can be observed to meet their distinctive dietary and environmental demands. Pristionchus and their relatives show varied feeding activities, both consuming bacteria and also predating other nematodes. In addition, Pristionchus nematodes display dimorphic mouth structures triggered by an irreversible developmental switch, which generates a narrower mouthed form with a single tooth and a wider mouthed form with an additional tooth. However, little is known about the specific predatory adaptations of these mouth forms or the associated mechanisms and behaviours. Through a mechanistic analysis of predation behaviours, in particular in the model organism Pristionchus pacificus, we reveal multifaceted feeding modes characterised by dynamic rhythmic switching and tooth stimulation. This complex feeding mode switch is regulated by the neurotransmitter serotonin in a previously uncharacterised role, a process that appears conserved across several predatory nematode species. Furthermore, we investigated the effects of starvation, prey size and prey preference on P. pacificus predatory feeding kinetics, revealing predation to be a fundamental component of the P. pacificus feeding repertoire, thus providing an additional rich source of nutrition in addition to bacteria. Finally, we found that mouth form morphology also has a striking impact on predation, suppressing predatory behaviour in the narrow mouthed form. Our results therefore hint at the regulatory networks involved in controlling predatory feeding and underscore P. pacificus as a model for understanding the evolution of complex behaviours.


Assuntos
Comportamento Predatório , Rhabditoidea/anatomia & histologia , Rhabditoidea/fisiologia , Serotonina/metabolismo , Animais , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...