Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 27798-27831, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973846

RESUMO

API (American Petroleum Institute) steels are the most employed metal alloys in the oil industry due to their outstanding mechanical properties; however, their protection is considered as an imperative matter because of their corrosion damage vulnerability when exposed to different surroundings that provoke a rate increase in the concomitant redox reactions. This problematic situation becomes more relevant when the generation and/or use of one or various aqueous corrosive environments occur, in addition to process conditions, the result of which is extremely difficult to be controlled. For these reasons, the internal and external protection of exposed metallic systems are considered as a fundamental concern, where internal corrosion is often controlled through the addition of corrosion inhibitors (CIs). The present review analyzes researchers' contributions in the last years to the study and evaluation of CIs for API steel in different corrosive media featuring HCl, H2SO4, H3NSO3H, CO2, H2S, NaCl, and production water under different temperature and flow conditions. Different CIs derived from plant extracts, drugs, nanoparticles, or ionic liquids, mainly destined for acid media, were found. Throughout the review, an exhaustive analysis of inhibition process results is carried out based on gravimetric and/or electrochemical techniques that consider the weight loss of the metallic material and electrical behavior (current density, resistance, capacitance, frequency, impedance, etc.). Likewise, the results of computational analyses and those of surface analysis techniques were taken into account to reinforce the study of CIs.

2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108777

RESUMO

In the present work, synthesis and characterization of 15 ionic liquids (ILs) derived from quaternary ammonium and carboxylates were carried out in order to proceed to their evaluation as corrosion inhibitors (CIs) of API X52 steel in 0.5 M HCl. Potentiodynamic tests confirmed the inhibition efficiency (IE) as a function of the chemical configuration of the anion and cation. It was observed that the presence of two carboxylic groups in long linear aliphatic chains reduced the IE, whereas in shorter chains it was increased. Tafel-polarization results revealed the ILs as mixed-type CIs and that the IE was directly proportional to the CI concentration. The compounds with the best IE were 2-amine-benzoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][-AA]), 3-carboxybut-3-enoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][-AI]), and dodecanoate of N,N,N-trimethyl-hexadecan-1-ammonium ([THDA+][-AD]) within the 56-84% interval. Furthermore, it was found that the ILs obeyed the Langmuir adsorption isotherm model and inhibited the corrosion of steel through a physicochemical process. Finally, the surface analysis by scanning electron microscopy (SEM) confirmed less steel damage in the presence of CI due to the inhibitor-metal interaction.


Assuntos
Compostos de Amônio , Líquidos Iônicos , Corrosão , Aço/química , Adsorção
3.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047266

RESUMO

In the present research work, the temperature effect on the corrosion inhibition process of API 5L X60 steel in 1 M H2SO4 by employing three vinylimidazolium poly(ionic liquid)s (PILs) was studied by means of electrochemical techniques, surface analysis and computational simulation. The results revealed that the maximal inhibition efficiency (75%) was achieved by Poly[VIMC4][Im] at 308 K and 175 ppm. The PILs showed Ecorr displacements with respect to the blank from -14 mV to -31 mV, which revealed the behavior of mixed-type corrosion inhibitors (CIs). The steel micrographs, in the presence and absence of PILs, showed less surface damage in the presence of PILs, thus confirming their inhibiting effect. The computational studies of the molecular orbitals and molecular electrostatic potential of the monomers suggested that the formation of a protecting film could be mainly due to the nitrogen and oxygen heteroatoms present in each structure.


Assuntos
Líquidos Iônicos , Temperatura , Aço/química , Corrosão , Carbono , Ácidos
4.
ACS Omega ; 7(47): 42975-42993, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467960

RESUMO

The present work deals with the corrosion inhibition mechanism of API 5L X52 steel in 1 M H2SO4 employing the ionic liquid (IL) decyl(dimethyl)sulfonium iodide [DDMS+I-]. Such a mechanism was elicited by the polarization resistance (R p), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques, both in stationary and dynamic states. The electrochemical results indicated that the corrosion inhibition was controlled by a charge transfer process and that the IL behaved as a mixed-type corrosion inhibitor (CI) with anodic preference. The experimental results revealed maximal inhibition efficiency (IE) rates up to 93% at 150 ppm in the stationary state, whereas in turbulent flow, the IE fell to 65% due to the formation of microvortexes that promoted higher desorption of IL molecules from the surface. The Gibbs free energy of adsorption (ΔG°ads) value of -34.89 kJ mol-1, obtained through the Langmuir isotherm, indicated the formation of an IL monolayer on the metal surface by combining physisorption and chemisorption. The surface analysis techniques confirmed the presence of Fe x O y , FeOOH, and IL on the surface and showed that corrosion damage diminished in the presence of IL. Furthermore, the quantum chemistry calculations (DFT) indicated that the iodide anion hosted most of the highest occupied molecular orbital (HOMO), which eased its adsorption on the anodic sites, preventing the deposition of sulfate ions on the electrode surface.

5.
ACS Omega ; 7(42): 37807-37824, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312349

RESUMO

A corrosion inhibition mechanism of API 5L X60 steel exposed to 1.0 M H2SO4 was proposed from the evaluation of three vinylalkylimidazolium poly(ionic liquids) (PILs), employing electrochemical and surface analysis techniques. The synthesized PILs were classified as mixed-type inhibitors whose surface adsorption was promoted mainly by bromide and imidazolate ions, which along with vinylimidazolium cations exerted a resistive effect driven by a charge transfer process by means of a protective PIL film with maximal efficiency of 85% at 175 ppm; the steel surface displayed less surface damage due to the formation of metal-PIL complex compounds.

6.
RSC Adv ; 12(20): 12273-12282, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35480365

RESUMO

The synthesis of terpolymers can lead to very interesting combinations of monomers, which can affect the solubility of the polymer, its thermal stability or resistance in saline aqueous media. Free-radical inverse microemulsion and solution polymerization techniques were used to prepare water-soluble acrylamide-N-vinylpyrrolidone-(vinylbenzyl)trimethylammonium chloride terpolymers. The formulation of the polymerizable microemulsion was optimized by using the screening of surfactant percentage and HLB concept. The influence of synthesis temperature on the terpolymer composition and molecular weight was investigated. The reactions were carried out at 60, 70, and 75 °C for the microemulsion technique and at 40, 50, and 55 °C for the solution polymerization technique. The reaction products from both processes were water-soluble polymers, and the two techniques reached high conversions and molecular masses. Maximal molecular weights were displayed by terpolymers prepared by the solution method at 40 °C (959, 840 g mol-1) and the inverse microemulsion method at 60 °C (795, 994 g mol-1). According to NMR analysis, the highest amount of (vinylbenzyl) trimethylammonium chloride was incorporated into the terpolymer structure by the inverse microemulsion method. In contrast, the solution method yielded higher contents of acrylamide and N-vinylpyrrolidone. The viscosity properties of the terpolymers in aqueous solutions were directly correlated to their molecular weight and synthesis conditions.

7.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576933

RESUMO

The use of new synthesized ammonium-based ionic liquids was explored as an alternative to the current process implemented in the betanin extraction from red beet juice, resulting in high yields: 70% and 82%. Betanin is a vegetal pigment that has been applied to a large variety of products in the food industry, which is important, for it can work as a substitute for the red synthetic dyes used nowadays. Additionally, the use of the kosmotropic salt sodium acetate was explored in order to separate the complex formed by the ionic liquid and pigment of interest in a process that combined two techniques: ATPS (aqueous two-phase system) and SOES (salting-out extraction system). The results reveal that the studied techniques could work as a novel process for the extraction of betanin from red beet juice employing ionic liquids, which have not been tested for this purpose in other research.


Assuntos
Beta vulgaris/química , Betacianinas/isolamento & purificação , Fracionamento Químico/métodos , Líquidos Iônicos/síntese química , Compostos de Amônio/química , Soluções/química
8.
Appl Spectrosc ; 72(4): 562-572, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29218999

RESUMO

The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

9.
Sci Pharm ; 85(1)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28085092

RESUMO

According to the principles of the methodology of bioisosteric replacements a series of methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates has been obtained as potential analgesics. In addition, a fundamentally new strategy for the synthesis of compounds of this chemical class involving the introduction of N-alkyl substituent at the final stage in 2,1-benzothiazine nucleus already formed has been proposed. Using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry and X-ray diffraction analysis it has been proven that in the DMSO/K2CO3 system the reaction of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylate and alkyl halides leads to formation of N-substituted derivatives with good yields regardless of the structure of the alkylating agent. The peculiarities of NMR (¹Ð and 13С) spectra of the compounds synthesized, their mass spectrometric behavior and the spatial structure are discussed. In N-benzyl derivative the ability to form a monosolvate with methanol has been found. According to the results of the pharmacological testing conducted on the model of the thermal tail-flick it has been determined that replacement of 4-ОН-group in methyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates for the methyl group is actually bioisosteric since all methyl 1-R-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxylates synthesized demonstrated a statistically significant analgesic effect. The majority of the substances can inhibit the thermal pain response much more effective than piroxicam in the same dose. Under the same conditions as an analgesic the N-methyl-substituted analog exceeds not only piroxicam, but more active meloxicam as well. Therefore, it deserves in-depth biological studies on other experimental models.

10.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 11): 1574-1576, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840711

RESUMO

In the title compound, C14H15NO4S, the di-hydro-thia-zine ring adopts a distorted sofa conformation with the S atom displaced from the mean plane through the N and C ring atoms by 0.767 (1) Å. The allyl substituent (C-C=C) is inclined to this mean plane by 78.5 (7)° and the acetate group [C(=O)-O-C] by 66.5 (3)°. In the crystal, mol-ecules are linked by C-H⋯π inter-actions forming chains propagating along the a-axis direction.

11.
Materials (Basel) ; 7(8): 5711-5734, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28788156

RESUMO

Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H2SO4) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4) to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

12.
Mol Divers ; 14(4): 777-87, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20091120

RESUMO

Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.


Assuntos
Fracionamento Químico/métodos , Gasolina , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Compostos de Enxofre/química , Enxofre/isolamento & purificação , Cromatografia Líquida/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Eficiência , Gasolina/análise , Ligação de Hidrogênio , Modelos Biológicos , Enxofre/química , Enxofre/metabolismo , Compostos de Enxofre/análise , Compostos de Enxofre/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...