Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416404

RESUMO

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Animais , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos , Mutação com Perda de Função , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Especificidade de Órgãos/genética
2.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627223

RESUMO

Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.

3.
Front Cell Dev Biol ; 9: 720194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621741

RESUMO

The effects of genotoxic stress can be mediated by activation of the Ataxia Telangiectasia Mutated (ATM) kinase, under both DNA damage-dependent (including ionizing radiation), and independent (including hypoxic stress) conditions. ATM activation is complex, and primarily mediated by the lysine acetyltransferase Tip60. Epigenetic changes can regulate this Tip60-dependent activation of ATM, requiring the interaction of Tip60 with tri-methylated histone 3 lysine 9 (H3K9me3). Under hypoxic stress, the role of Tip60 in DNA damage-independent ATM activation is unknown. However, epigenetic changes dependent on the methyltransferase Suv39H1, which generates H3K9me3, have been implicated. Our results demonstrate severe hypoxic stress (0.1% oxygen) caused ATM auto-phosphorylation and activation (pS1981), H3K9me3, and elevated both Suv39H1 and Tip60 protein levels in FTC133 and HCT116 cell lines. Exploring the mechanism of ATM activation under these hypoxic conditions, siRNA-mediated Suv39H1 depletion prevented H3K9me3 induction, and Tip60 inhibition (by TH1834) blocked ATM auto-phosphorylation. While MDM2 (Mouse double minute 2) can target Suv39H1 for degradation, it can be blocked by sirtuin-1 (Sirt1). Under severe hypoxia MDM2 protein levels were unchanged, and Sirt1 levels depleted. SiRNA-mediated depletion of MDM2 revealed MDM2 dependent regulation of Suv39H1 protein stability under these conditions. We describe a novel molecular circuit regulating the heterochromatic state (H3K9me3 positive) under severe hypoxic conditions, showing that severe hypoxia-induced ATM activation maintains H3K9me3 levels by downregulating MDM2 and preventing MDM2-mediated degradation of Suv39H1. This novel mechanism is a potential anti-cancer therapeutic opportunity, which if exploited could target the hypoxic tumor cells known to drive both tumor progression and treatment resistance.

4.
PLoS One ; 9(11): e112580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25396735

RESUMO

This study examined the role played by hypoxia-inducible factors (HIFs) in malignant phenotype maintenance and canonical Wnt signaling. Under normoxia, we determined that both HIF-1α and HIF-2α are expressed in human colon cancer cells but not in their non-malignant counterparts. The stable knockdown of HIF-1α or HIF-2α expression induced negative effects on the malignant phenotype of colon cancer cells, with lactate production, the rate of apoptosis, migration, CXCR4-mediated chemotaxis, and tumorigenic activity all being significantly affected by HIF knockdown and with HIF-1α depletion exerting greater effects. Knockdown of these two HIF transcripts induced different and even opposite effects on ß-catenin transcriptional activity in colon cancer cells with different genetic Wnt signaling pathways. In SW480 cells, HIF-2α knockdown did not affect ß-catenin levels, increasing the transcriptional activity of ß-catenin by inducing its nuclear accumulation, whereas HIF-1α silencing negatively affected the stability and transcriptional activity of ß-catenin, inducing its exit from the nuclei and its recruitment to the cell membrane by E-cadherin. In addition, although HIF-1α depletion induced a reversal of the epithelial-to-mesenchymal transition (EMT), HIF-2α silencing altered the expression of the stem cell markers CD44, Oct4, and CD24 and of the differentiation marker CK20 in the opposite direction as HIF-1α silencing. Remarkably, HIF-2α knockdown also enhanced ß-catenin transcriptional activity under hypoxia in cells that displayed normal Wnt signaling, suggesting that the gene negatively modulates canonical Wnt signaling in colon cancer cells. Taken together, our results indicate that HIFs play opposing roles in canonical Wnt signaling and are essential for the stemness and malignancy maintenance of colon cancer cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Via de Sinalização Wnt/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunoprecipitação , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...