Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358687

RESUMO

Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.

2.
RNA Biol ; 19(1): 819-828, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704670

RESUMO

The Androgen Receptor (AR), transcriptionally activated by its ligands, testosterone and dihydrotestosterone (DHT), is widely expressed in cells and tissues, influencing normal biology and disease states. The protein product of the AR gene is involved in the regulation of numerous biological functions, including the development and maintenance of the normal prostate gland and of the cardiovascular, musculoskeletal and immune systems. Androgen signalling, mediated by AR protein, plays a crucial role in the development of prostate cancer (PCa), and is presumed to be involved in other cancers including those of the breast, bladder, liver and kidney. Significant research and reviews have focused on AR protein function; however, inadequate research and literature exist to define the function of AR mRNA in normal and cancer cells. The AR mRNA transcript is nearly 11 Kb long and contains a long 3' untranslated region (UTR), suggesting its biological role in post-transcriptional regulation, consequently affecting the overall functions of both normal and cancer cells. Research has demonstrated that many biological activities, including RNA stability, translation, cellular trafficking and localization, are associated with the 3' UTRs of mRNAs. In this review, we describe the potential role of the AR 3' UTR and summarize RNA-binding proteins (RBPs) that interact with the AR mRNA to regulate post-transcriptional metabolism. We highlight the importance of AR mRNA as a critical modulator of carcinogenesis and its important role in developing therapy-resistant prostate cancer.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
Steroids ; 173: 108878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174291

RESUMO

Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.


Assuntos
Colesterol/biossíntese , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Animais , Colesterol/genética , Humanos , MicroRNAs/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...