Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683209

RESUMO

This paper presents an analytical model that quantifies the stress ratio between two test specimens for the same probability of failure based on the Weibull weakest link theory. The model takes into account the test specimen geometry, i.e., its shape and volume, and the related non-constant stress state along the specimen. The proposed model is a valuable tool for quantifying the effect of a change of specimen geometry on the probability of failure. This is essential to distinguish size scaling from the actual improvement in measured strength when specimen geometry is optimized, aiming for failure in the gauge section. For unidirectional carbon fibre composites with Weibull modulus m in the range 10-40, it can be calculated by the model that strength measured with a straight-sided specimen will be 1-2% lower than the strength measured with a specific waisted butterfly-shaped specimen solely due to the difference in test specimen shape and volume.

2.
Materials (Basel) ; 14(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300857

RESUMO

This paper presents an experimental method for tensile testing of unidirectional carbon fibre composites. It uses a novel combination of a new specimen geometry, protective layer, and a robust data analysis method. The experiments were designed to test and analyze unprotected (with conventional end-tabs) and protected (with continuous end-tabs) carbon fibre composite specimens with three different specimen geometries (straight-sided, butterfly, and X-butterfly). Initial stiffness and strain to failure were determined from second-order polynomial fitted stress-strain curves. A good agreement between back-calculated and measured stress-strain curves is found, on both composite and fibre level. For unprotected carbon composites, the effect of changing specimen geometry from straight-sided to X-butterfly was an increase in strain to failure from 1.31 to 1.44%. The effect of protection on X-butterfly specimens was an increase in strain to failure from 1.44 to 1.53%. For protected X-butterfly specimens, the combined effect of geometry and protection led to a significant improvement in strain to failure of 17% compared to unprotected straight-sided specimens. The observed increasing trend in the measured strain to failure, by changing specimen geometry and protection, suggests that the actual strain to failure of unidirectional carbon composites is getting closer to be realized.

3.
PLoS One ; 15(6): e0234701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579569

RESUMO

Despite the good mechanical properties of natural fibre composites, their use in load-bearing components is still limited, which may be due to lack of knowledge and confidence in calculating the performance of the composites by mechanical models. The present study is providing an experimental evaluation of stiffness predictions of multiaxial flax fibre composite by classical laminate theory (CLT). The experimental base is (i) multiaxial flax fibre composites fabricated with two types of biaxial non-crimp fabrics, having a nominal yarn orientation of ±45°, and (ii) uniaxial flax fibre composites fabricated with the same flax yarn as used in the fabrics. The fabricated composites are characterised by volumetric composition, yarn orientation and tensile properties. A fast and easy operational Fast Fibre Orientation (FFO) method is developed to determine the actual yarn orientation in fabrics and composites. It is demonstrated that the FFO method is a robust method, giving repeatable results for yarn orientations, and it can be used both on fabrics and composites. CLT predictions of stiffness of the multiaxial flax fibre composites are shown to be in good agreement with the measured stiffnesses of the composites in three testing directions (0°, 45°, and 90°). The use of the actual yarn orientations measured by the FFO method, instead of the nominal yarn orientations of ±45°, is shown to result in improved CLT predictions of stiffness with a mean deviation between predictions and measurements on 0.2 GPa. Altogether, it is demonstrated that stiffness of multiaxial flax fibre composites can be accurately predicted by CLT, without any fitting constants, based on independently determined stiffness parameters of the related uniaxial flax fibre composite, and based on measured yarn orientations in the flax fibre fabric.


Assuntos
Linho/fisiologia , Modelos Teóricos , Têxteis , Fenômenos Biomecânicos , Estresse Mecânico , Resistência à Tração
4.
Bioresour Technol ; 140: 36-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23672937

RESUMO

A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma-assisted pretreatment (PAP) and ball milling (BM), to determine effects of the pretreatment methods on the conversion of C. linum into ethanol by simultaneous saccharification and fermentation (SSF). WO and BM showed the highest ethanol yield of 44 g ethanol/100g glucan, which was close to the theoretical ethanol yield of 57 g ethanol/100g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae, containing high amounts of glucan and cleaned from salts, enhanced the ethanol yield significantly.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/metabolismo , Alga Marinha/metabolismo , Biomassa , Carboidratos/análise , Fermentação/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Gases em Plasma/farmacologia , Alga Marinha/química , Alga Marinha/efeitos dos fármacos , Vapor , Temperatura , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...