Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Nutr ; 62(6): 2509-2525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37160801

RESUMO

PURPOSE: Obesity has become a serious public health problem with its alarmingly increasing prevalence worldwide, prompting researchers to create and develop several anti-obesity drugs. Here, we aimed to investigate the protective effects of perilla seed oil (PSO), sunflower oil (SFO), and tea seed oil (TSO) against obesity through the modulation of the gut microbiota composition and related metabolic changes in mice fed a high-fat diet (HFD). METHODS: Mice were divided into six equal groups: ND (normal diet); HFD; ORL (HFD supplemented with 20 mg/kg body weight of orlistat); PSO, SFO, and TSO (HFD supplemented with 2 g/kg body weight of PSO, SFO, and TSO, respectively). RESULTS: Our findings showed that PSO, SFO, and TSO supplementation significantly reduced body weight, organ weight, blood glucose, lipopolysaccharides (LPS), insulin resistance, and improved serum lipid levels (TG, TC, LDL-C, and HDL-C). Meanwhile, the three treatments alleviated oxidative stress and hepatic steatosis and reduced liver lipid accumulation. Relative mRNA expression levels of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) and lipid synthesis-related genes (PPAR-γ, FAS, and SREBP-1) were down-regulated, while ß-oxidation-related genes (PPAR-α, CPT1a, and CPT1b) were up-regulated in the liver tissue of treated mice. Besides, dietary oil supplementation alleviated HFD-induced gut microbiota dysbiosis by promoting gut microbiota richness and diversity, decreasing the Firmicutes-to-Bacteroidetes ratio, and boosting the abundance of some healthy bacteria, like Akkermansia. CONCLUSIONS: PSO, SFO, and TSO supplementation could alleviate inflammation, oxidative stress, and hepatic steatosis, likely by modulating the gut microbiota composition in HFD-fed mice.


Assuntos
Microbioma Gastrointestinal , Helianthus , Perilla , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Receptores Ativados por Proliferador de Peroxissomo , Obesidade/metabolismo , Suplementos Nutricionais , Óleos de Plantas/farmacologia , Chá , Camundongos Endogâmicos C57BL
2.
Chinese Journal of Biotechnology ; (12): 318-336, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970377

RESUMO

Olfactory epithelium, which detects and transmits odor signals, is critical for the function of olfactory system. Olfactory epithelium is able to recover spontaneously after injury under normal circumstances, but this ability is dampened in certain diseases or senility, which causes olfactory dysfunction. The olfactory epithelium consists of basal cells, sustentacular cells and olfactory sensory neurons. In order to develop an olfactory epithelial organoid containing multiple olfactory cell types in vitro, we used three-dimensional culture model and small molecules screening. This organoid system consists of horizontal basal-like cells, globose basal-like cells, sustentacular-like cells and olfactory sensory neurons-like cells. Through statistical analysis of clone diameter, immunofluorescence staining and qPCR detection of the expression level of related marker genes. We identified a series of growth factors and small molecule compounds that affected the proliferation, composition and gene expression of the organoids. CHIR-99021, an activator of Wnt signaling pathway, increased the colony formation and proliferation rate of olfactory epithelial organoids and the expression level of marker genes of olfactory sensory neurons-like cells. In addition, each factor in the culture system increased the proportion of c-Kit-positive globose basal-like cell colonies in organoids. Moreover, EGF and vitamin C were both beneficial to the expression of horizontal basal-like cell marker genes in organoids. The established olfactory epithelial organoid system mimicked the process of olfactory epithelial stem cells differentiating into various olfactory epithelial cell types, thus providing a research model for studying olfactory epithelial tissue regeneration, the pathological mechanism of olfactory dysfunction and drug screening for olfactory dysfunction treatment.


Assuntos
Humanos , Mucosa Olfatória/metabolismo , Células Epiteliais , Organoides/metabolismo , Transtornos do Olfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...