Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 8(4): e1154, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022462

RESUMO

BACKGROUND: Dihydropteridine reductase (DHPR) is one of the key enzymes for maintaining in the organism the supply of tetrahydrobiopterin (BH4 ), an essential cofactor for aromatic amino acid hydroxylases. Its dysfunction causes the condition of hyperphenylalaninemia together with the lack of neurotransmitters. METHODS: We report a patient with biochemically diagnosed DHPR deficiency, with extensive molecular investigations undertaken to detect variations in quinoid dihydropteridine reductase (QDPR) gene. Sanger sequencing of QDPR coding regions, exome sequencing, QDPR mRNA PCR, and karyotyping were followed by trio genome sequencing. RESULTS: Short-read genome sequencing revealed a homozygous 9-Mb inversion disrupting QDPR. Structural variant breakpoints in chromosome 4 were located to intron 2 of QDPR at Chr4(GRCh38):g.17505522 and in intron 8 of the ACOX3 gene, Chr4(GRCh38):g.8398067). Both nonrelated parents carried the variant in heterozygous state. The inversion was not present in gnomAD structural variant database. CONCLUSION: Identification of the exact breakpoints now allows further straightforward molecular genetic testing of potential carriers of the inversion. This study extends the pathogenic variant spectrum of DHPR deficiency and highlights the role of structural variants in recessive metabolic disorders. To our knowledge, this is the first report on a large, canonical (rather than complex) homozygous pathogenic inversion detected by genome sequencing.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 4/genética , Homozigoto , Fenilcetonúrias/genética , Acil-CoA Oxidase/genética , Criança , Pontos de Quebra do Cromossomo , Feminino , Testes Genéticos , Humanos , Fenilcetonúrias/patologia , Sequenciamento do Exoma
2.
Mol Genet Genomic Med ; 7(9): e915, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31392824

RESUMO

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria type II, is a mitochondrial fatty acid oxidation disorder caused by variants in ETFA, ETFB, and ETFDH. Recently, riboflavin transporter genes and the mitochondrial FAD transporter gene have also been associated with MADD-like phenotype. METHODS: We present a case of MADD identified by newborn biochemical screening in a full-term infant suggestive of both medium-chain acyl-CoA dehydrogenase deficiency and MADD. Urine organic acid GC/MS analysis was also concerning for both disorders. However, panel sequencing of ETFA, ETFB, ETFDH, and ACADM was unrevealing. Ultimately, a variant in the FAD synthase gene, FLAD1 was found explaining the clinical presentation. RESULTS: Exome sequencing identified compound heterozygous variants in FLAD1: NM_025207.4: c.[442C>T];[1588C>T], p.[Arg148*];[Arg530Cys]. The protein damaging effects were confirmed by Western blot. The patient remained asymptomatic and there was no clinical decompensation during the first year of life. Plasma acylcarnitine and urinary organic acid analyses normalized without any treatment. Riboflavin supplementation was started at 15 months. CONCLUSION: Newborn screening, designed to screen for specific treatable congenital metabolic diseases, may also lead to the diagnosis of additional, very rare metabolic disorders such as FLAD1 deficiency. The case further illustrates that even milder forms of FLAD1 deficiency are detectable in the asymptomatic state by newborn screening.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Nucleotidiltransferases/genética , Carnitina/análogos & derivados , Carnitina/sangue , Feminino , Humanos , Recém-Nascido , Deficiência Múltipla de Acil Coenzima A Desidrogenase/sangue , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/urina , Mutação , Riboflavina/administração & dosagem
3.
Mol Genet Metab Rep ; 19: 100467, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963030

RESUMO

Blood phenylalanine (Phe) values from the dried blood spots of all Estonian phenylketonuria (PKU) patients have been deposited into a unified electronic laboratory database for eight years, providing an opportunity to assess the adherence of the patients to dietary recommendations over time and to observe patient practices both individually and collectively. Our results demonstrate generally good adherence to clinical and dietary recommendations during the first six years of life, as the percentage of patients with median Phe values fitting under the national recommendation levels were 95%, 84% and 70% in age groups 0-1, 1-2 and 2-6 years, respectively. Conversely, significant deviations occur in the group of 6 to 12 year-olds, mildly decreasing in adolescence and increasing in adulthood (43%, 53% and 57%, respectively). Wide individual differences occurred in all groups, especially in patients with a classical PKU phenotype caused by PAH variants that fully abolish phenylalanine hydroxylase activity. Surprisingly, some of the best dietary adherence was seen in the late-diagnosed PKU patients with poor cognitive functioning. As a rule, the median of Phe values crosses the recommended thresholds in approximately one third to one half of the patients of each age group after the first two years of life.

4.
JIMD Rep ; 40: 39-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28956315

RESUMO

The present study provides a retrospective overview of the cohort of phenylketonuria (PKU) patients in Estonia. Based on the available data, the patients clearly cluster into two distinct groups: the patients with late diagnosis and start of therapy (N = 46), who were born before 1993 when the national newborn screening programme was launched, and the screened babies (N = 48) getting their diagnoses at least in a couple of weeks after birth.Altogether 153 independent phenylalanine hydroxylase (PAH) alleles from 92 patients were analysed in the study, wherein 80% of them were carrying the p.Arg408Trp variation, making the relative frequency of this particular variation one of the highest known. Additionally, 15 other different variations in the PAH gene were identified, each with very low incidence, providing ground for phenotypic variability and potential response to BH4 therapy. Genealogical analysis revealed some "hotspots" of the origin of the p.Arg408Trp variation, with especially high density in South-East Estonia. According to our data, the incidence of PKU in Estonia is estimated as 1 in 6,700 newborns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...