Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 75(22): 11218-21, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11602761

RESUMO

Several herpesviruses encode Fc receptors that may play a role in preventing antibody-mediated clearance of the virus in vivo. Human cytomegalovirus (HCMV) induces an Fc-binding activity in cells upon infection, but the gene that encodes this Fc-binding protein has not been identified. Here, we demonstrate that the HCMV AD169 open reading frame TRL11 and its identical copy, IRL11, encode a type I membrane glycoprotein that possesses IgG Fc-binding capabilities.


Assuntos
Proteínas de Transporte/genética , Citomegalovirus/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Fases de Leitura Aberta , Sequência de Aminoácidos , Proteínas de Transporte/química , Dados de Sequência Molecular , Peso Molecular
2.
Mol Microbiol ; 36(4): 940-54, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10844680

RESUMO

The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição , Vibrio/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , RNA Polimerases Dirigidas por DNA/genética , Ativação Enzimática , Dados de Sequência Molecular , Mutagênese , Fenótipo , RNA Polimerase Sigma 54 , Proteínas Repressoras/genética , Fator sigma/genética , Vibrio/genética , Vibrio/metabolismo
3.
Mol Microbiol ; 35(1): 139-49, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10632884

RESUMO

The bioluminescent marine bacterium Vibrio harveyi controls light production using two parallel quorum-sensing systems. V. harveyi produces two autoinducers (AI-1 and AI-2), which are recognized by cognate membrane-bound two-component hybrid sensor kinases called LuxN and LuxQ respectively. Under conditions of low cell density, in the absence of autoinducer, the hybrid sensors are kinases, and under conditions of high cell density, in the presence of autoinducer, the sensors are phosphatases. These activities allow LuxN and LuxQ to modulate the level of phosphorylation of the response regulator protein LuxO. LuxO, in turn, controls the transcription of the genes encoding luciferase. The phosphorelay protein LuxU is required for signalling to LuxO. In this report, we present a genetic analysis of the activities of the AI-1 sensor LuxN. Point mutations and in frame deletions were constructed in luxN and recombined onto the chromosome of V. harveyi for in vivo phenotypic analysis. We show that the conserved histidine (H471) in the sensor kinase domain of LuxN is required for kinase activity but not for phosphatase activity. In contrast, the conserved aspartate (D771) in the response regulator domain of LuxN is required for both activities. Furthermore, the LuxN phosphatase activity is localized to the response regulator domain. Our results indicate that the LuxN kinase activity is regulated by the presence of AI-1, whereas the LuxN phosphatase activity is constitutive. We also show that signalling from the two V. harveyi quorum-sensing systems is not equivalent. AI-1 and LuxN have a much greater effect on the level of LuxO phosphate and therefore Lux expression than do AI-2 and LuxQ.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas Quinases/fisiologia , Fatores de Transcrição , Vibrio/fisiologia , Proteínas de Bactérias/genética , Sequência de Bases , DNA Recombinante , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...