Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 3(6): e0001975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347725

RESUMO

Air travel plays an important role in the cross-border spread of infectious diseases. During the SARS-CoV-2 pandemic many countries introduced strict border testing protocols to monitor the incursion of the virus. However, high implementation costs and significant inconvenience to passengers have led public health authorities to consider alternative methods of disease surveillance at borders. Aircraft wastewater monitoring has been proposed as one such alternative. In this paper we assess the theoretical limits of aircraft wastewater monitoring and compare its performance to post-arrival border screening approaches. Using an infectious disease model, we simulate an unmitigated SARS-CoV-2 epidemic originating in a seed country and spreading to the United Kingdom (UK) through daily flights. We use a probabilistic approach to estimate the time of first detection in the UK in aircraft wastewater and respiratory swab screening. Across a broad range of model parameters, our analysis indicates that the median time between the first incursion and detection in wastewater would be approximately 17 days (IQR: 7-28 days), resulting in a median of 25 cumulative cases (IQR: 6-84 cases) in the UK at the point of detection. Comparisons to respiratory swab screening suggest that aircraft wastewater monitoring is as effective as random screening of 20% of passengers at the border, using a test with 95% sensitivity. For testing regimes with sensitivity of 85% or less, the required coverage to outperform wastewater monitoring increases to 30%. Analysis of other model parameters suggests that wastewater monitoring is most effective when used on long-haul flights where probability of defecation is above 30%, and when the target pathogen has high faecal shedding rates and reasonable detectability in wastewater. These results demonstrate the potential use cases of aircraft wastewater monitoring and its utility in a wider system of public health surveillance.

2.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074153

RESUMO

Wastewater-based epidemiology has been used extensively throughout the COVID-19 (coronavirus disease 19) pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and its variants. It has proven an excellent, complementary tool to clinical sequencing, supporting the insights gained and helping to make informed public-health decisions. Consequently, many groups globally have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations is critical in this process and in the assignment of circulating variants; yet, to date, the performance of variant-calling algorithms in wastewater samples has not been investigated. To address this, we compared the performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three different SARS-CoV-2 variants of concern (VOCs) (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15th and 18th December 2021. We used the fundamental parameters of recall (sensitivity) and precision (specificity) to confirm the presence of mutational profiles defining specific variants across the six variant callers. Our results show that BCFtools, FreeBayes and VarScan found the expected variants with higher precision and recall than GATK or iVar, although the latter identified more expected defining mutations than other callers. LoFreq gave the least reliable results due to the high number of false-positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Algoritmos
3.
J Hazard Mater ; 424(Pt B): 127456, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655869

RESUMO

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. In the United Kingdom, the evidence that wastewater could be used to monitor the SARS-CoV-2 virus prompted the development of National wastewater surveillance programmes. The scale and pace of this work has proven to be unique in monitoring of virus dynamics at a national level, demonstrating the importance of wastewater-based epidemiology (WBE) for public health protection. Beyond COVID-19, it can provide additional value for monitoring and informing on a range of biological and chemical markers of human health. A discussion of measurement uncertainty associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19 is presented, showing that sources of uncertainty impacting measurement quality and interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood, we present approaches taken by the UK programmes to manage and mitigate the more tractable sources of uncertainty. This work provides a platform to integrate uncertainty management into WBE activities as part of global One Health initiatives beyond the pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...