Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Microbiol ; 170(6-7): 288-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31279086

RESUMO

Due to land uplift after the last ice age, previously stable Baltic Sea sulfidic sediments are becoming dry land. When these sediments are drained, the sulfide minerals are exposed to air and can release large amounts of metals and acid into the environment. This can cause severe ecological damage such as fish kills in rivers feeding the northern Baltic Sea. In this study, five sites were investigated for the occurrence of acid sulfate soils and their geochemistry and microbiology was identified. The pH and soil chemistry identified three of the areas as having classical acid sulfate soil characteristics and culture independent identification of 16S rRNA genes identified populations related to acidophilic bacteria capable of catalyzing sulfidic mineral dissolution, including species likely adapted to low temperature. These results were compared to an acid sulfate soil area that had been flooded for ten years and showed that the previously oxidized sulfidic materials had an increased pH compared to the unremediated oxidized layers. In addition, the microbiology of the flooded soil had changed such that alkalinity producing ferric and sulfate reducing reactions had likely occurred. This suggested that flooding of acid sulfate soils mitigates their environmental impact.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Ácidos/análise , Bactérias/genética , Ferro/análise , Metais/análise , Microbiologia do Solo , Sulfatos/análise , Sulfetos/análise
2.
Sci Total Environ ; 625: 39-49, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29287211

RESUMO

Naturally occurring sulfide rich deposits are common along the northern Baltic Sea coast that when exposed to air, release large amounts of acid and metals into receiving water bodies. This causes severe environmental implications for agriculture, forestry, and building of infrastructure. In this study, we investigated the efficiency of ultrafine-grained calcium carbonate and peat (both separately and in combination) to mitigate acid and metal release. The experiments were carried out aerobically that mimicked summer conditions when the groundwater level is low and acid sulfate soils are exposed to oxygen, and anaerobically that is similar to autumn to spring conditions. The ultrafine-grained calcium carbonate dissipated well in the soil and its effect alone and when mixed with peat raised the pH and reduced pyrite dissolution while peat alone was similar to the controls and did not halt metal and acid release. High throughput 16S rRNA gene sequencing identified populations most similar to characterized acidophiles in the control and peat treated incubations while the acidophilic like populations were altered in the calcium carbonate alone and calcium carbonate plus peat treated acid sulfate soils. Coupled with the geochemistry data, it was suggested that the acidophiles were inactivated by the high pH in the presence of calcium carbonate but catalyzed pyrite dissolution in the controls and peat incubations. In conclusion, the anaerobic conditions during winter would likely be sufficient to mitigate acid production and metal release from acid sulfate soils and in the summer, treatment with calcium carbonate was the best mitigation method.


Assuntos
Ácidos/análise , Carbonato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Metais/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Ferro , RNA Ribossômico 16S , Sulfatos/química , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...