Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 145: 105466, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585732

RESUMO

Fast and accurate diagnosis is critical for the triage and management of pneumonia, particularly in the current scenario of a COVID-19 pandemic, where this pathology is a major symptom of the infection. With the objective of providing tools for that purpose, this study assesses the potential of three textural image characterisation methods: radiomics, fractal dimension and the recently developed superpixel-based histon, as biomarkers to be used for training Artificial Intelligence (AI) models in order to detect pneumonia in chest X-ray images. Models generated from three different AI algorithms have been studied: K-Nearest Neighbors, Support Vector Machine and Random Forest. Two open-access image datasets were used in this study. In the first one, a dataset composed of paediatric chest X-ray, the best performing generated models achieved an 83.3% accuracy with 89% sensitivity for radiomics, 89.9% accuracy with 93.6% sensitivity for fractal dimension and 91.3% accuracy with 90.5% sensitivity for superpixels based histon. Second, a dataset derived from an image repository developed primarily as a tool for studying COVID-19 was used. For this dataset, the best performing generated models resulted in a 95.3% accuracy with 99.2% sensitivity for radiomics, 99% accuracy with 100% sensitivity for fractal dimension and 99% accuracy with 98.6% sensitivity for superpixel-based histons. The results confirm the validity of the tested methods as reliable and easy-to-implement automatic diagnostic tools for pneumonia.


Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , COVID-19/diagnóstico por imagem , Criança , Humanos , Pandemias , SARS-CoV-2 , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...