Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Chem Eng ; 12(1)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38576544

RESUMO

Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials. These systems were assessed for their adsorption of benzene from air using in vitro and in silico methods. Isothermal, thermodynamic, and kinetic experiments indicated that all green-engineered composites had improved binding profiles for benzene, as demonstrated by increased binding affinities (Kf ≥ 900 vs 472) and lower values of Gibbs free energy (ΔG = -16.8 vs -15.2) compared to activated carbon. Adsorption of benzene to all composites was achieved quickly (< 30 min), and the green-engineered composites also showed low levels of desorption (≤ 25%). While free chlorophyll is known to be photosensitive, chlorophylls in the green-engineered composites showed photostability and maintained high binding rates (≥ 70%). Additionally, the in silico simulations demonstrated the significant contribution of chlorophyll for the overall binding of benzene in clay systems and that chlorophyll could contribute to benzene binding in the carbon-based systems. Together, these studies indicated that novel, green-engineered composite materials can be effective filter sorbents to enhance the removal of benzene from air.

2.
Water Res ; 249: 120944, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070346

RESUMO

Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Argila/química , Água/química , Plásticos , Microplásticos , Adsorção , Clorofila/análise , Poluentes Químicos da Água/análise
3.
Water Res ; 221: 118788, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777320

RESUMO

After disasters, such as forest fires and oil spills, high levels of benzene (> 1 ppm) can be detected in the water, soil, and air surrounding the disaster site, which poses a significant health risk to human, animal, and plant populations in the area. While remediation methods with activated carbons have been employed, these strategies are limited in their effectiveness due to benzene's inherent stability and limited retention to most surfaces. To address this problem, calcium and sodium montmorillonite clays were amended with a mixture of chlorophyll (a) and (b); their binding profile and ability to detoxify benzene were characterized using in vitro, in silico, and well-established ecotoxicological (ecotox) bioassay methods. The results of in vitro isothermal analyses indicated that chlorophyll-amended clays showed an improved binding profile in terms of an increased binding affinity (Kf = 668 vs 67), increased binding percentage (52% vs 11%), and decreased rates of desorption (28% vs 100%), compared to the parent clay. In silico simulation studies elucidated the adsorption mechanism and validated that the addition of the chlorophyll to the clays increased the adsorption of benzene through Van der Waals forces (i.e., aromatic π-π stacking and alkyl-π interactions). The sorbents were also assessed for their safety and ability to protect sensitive ecotox organisms (Lemna minor and Caenorhabditis elegans) from the toxicity of benzene. The inclusion of chlorophyll-amended clays in the culture medium significantly reduced benzene toxicity to both organisms, protecting C. elegans by 98-100% from benzene-induced mortality and enhancing the growth rates of L. minor. Isothermal analyses, in silico modeling, and independent bioassays all validated our proof of concept that benzene can be sequestered, tightly bound, and stabilized by chlorophyll-amended montmorillonite clays. These novel sorbents can be utilized during disasters and emergencies to decrease unintentional exposures from contaminated water, soil, and air.


Assuntos
Bentonita , Benzeno , Adsorção , Silicatos de Alumínio , Animais , Bentonita/química , Caenorhabditis elegans , Clorofila , Argila/química , Humanos , Solo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...