Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 77(5): 961-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23666511

RESUMO

The present study aimed at a comparative characterization of two distinct extracellular monocrotophos hydrolases, from Penicillium aculeatum ITCC 7980.10 (M3) and Fusarium pallidoroseum ITCC 7785.10 (M4), isolated from agricultural fields. The MCP hydrolases were purified by Sephadex G-100 column and DEAE-Sepharose CL-6B ion-exchange column followed by SDS-PAGE analysis, which showed the presence of two hydrolases, of 33 and 67 kDa respectively. Both enzymes were most active at alkaline pH and were stable over a wide range of temperatures (60-70 °C). Between the strains, the MCP hydrolases from M3 were 2-fold more active than that from M4. Enzyme kinetic studies showed lowest Km (33.52 mM) and highest Vmax (5.18 U/mg protein) for OPH67 of M3 in comparison to the Km and Vmax of the other hydrolases purified from M3 and M4, suggesting that M3 OPH67 was the most efficient MCP hydrolase. To the best of our knowledge, this is the first report of the purification of two distinct extracellular thermostable MCP hydrolases from fungal strains Penicillium aculeatum ITCC 7980.10 and Fusarium pallidoroseum ITCC 7785.10. Owing to its potential MCP hydrolyzing activity, M3 OPH67 can perhaps used directly or in the encapsulated form for remediation of MCP contaminated sites.


Assuntos
Agricultura , Espaço Extracelular/enzimologia , Fusarium/citologia , Hidrolases/metabolismo , Monocrotofós/isolamento & purificação , Penicillium/citologia , Amidas/química , Biodegradação Ambiental , Estabilidade Enzimática , Fusarium/isolamento & purificação , Hidrolases/isolamento & purificação , Hidrólise , Cinética , Monocrotofós/química , Monocrotofós/metabolismo , Penicillium/isolamento & purificação , Praguicidas/química , Praguicidas/isolamento & purificação , Praguicidas/metabolismo
2.
Braz. j. microbiol ; 40(4): 884-892, Oct.-Dec. 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-528171

RESUMO

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 ìg /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 percent. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.


Assuntos
Bacillus subtilis/isolamento & purificação , Genotoxicidade , Pirenos/análise
3.
Braz J Microbiol ; 40(4): 884-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031437

RESUMO

Benzo [a] Pyrene (BaP) is a highly recalcitrant, polycyclic aromatic hydrocarbon (PAH) with high genotoxicity and carcinogenicity. It is formed and released into the environment due to incomplete combustion of fossil fuel and various anthropogenic activities including cigarette smoke and automobile exhausts. The aim of present study is to isolate bacteria which can degrade BaP as a sole source of carbon and energy. We have isolated a novel strain BMT4i (MTCC 9447) of Bacillus subtilis from automobile contaminated soil using BaP (50 g /ml) as the sole source of carbon and energy in basal salt mineral (BSM) medium. The growth kinetics of BMT4i was studied using CFU method which revealed that BMT4i is able to survive in BaP-BSM medium up to 40 days attaining its peak growth (10(29) fold increase in cell number) on 7 days of incubation. The BaP degradation kinetics of BMT4i was studied using High Performance Liquid Chromatography (HPLC) analysis of BaP biodegradation products. BMT4i started degrading BaP after 24 hours and continued up to 28 days achieving maximum degradation of approximately 84.66 %. The above findings inferred that BMT4i is a very efficient degrader of BaP. To our best of knowledge, this is the first report showing utilization of BaP as a sole source of carbon and energy by bacteria. In addition, BMT4i can degrade a wide range of PAHs including naphthalene, anthracene, and dibenzothiophene therefore, it could serve as a better candidate for bioremediation of PAHs contaminated sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...