Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Zootaxa ; 5297(2): 151-188, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37518801

RESUMO

The nectar-feeding bats of the genus Anoura are widely distributed in the Neotropics, but are most speciose in the Andes. Anoura cultrata is a rare mid-elevation bat occurring in South and Central America. It is thought to be one of the few bat species exemplifying a latitudinal cline in body size. We address three systematic and biogeographic questions: 1) is the geographic variation in A. cultrata continuous, as argued to justify its current monotypic status? 2) do ecogeographic barriers to dispersal affect such variation? and 3) how do the genetic divergence and biogeography of the species compare to those of other members of the genus? To answer these questions, we used morphometric analyses, ecological niche modeling, and DNA barcoding. We divided the samples of A. cultrata into six geographic groups, delimited by topographic depressions separating mountain systems. We did not find significant correlations between body size and the geographic coordinates within five groups. Therefore, we conclude that ecogeographic barriers to dispersal between the regions occupied by such groups influenced morphometric variation in A. cultrata, and that despite its general north to south reduction in body size, the species does not show continuous clinal variation. A recent phylogenetic study of the genus Anoura concluded that it contains seven valid species. Our DNA barcoding analysis and morphological examination indicated that at least 10 species should be recognized, including A. peruana distinct from A. geoffroyi, and A. aequatoris and A. luismanueli distinct from A. caudifer. Moreover, we show that Central and South American populations of A. cultrata differ from each other at least at the subspecific level, thus we respectively refer to them as A. cultrata cultrata and as A. c. brevirostrum. Similarly, we refer to Central American and Mexican populations of 'A. geoffroyi' as A. peruana lasiopyga, and to their South American counterparts as A. p. peruana. The range of the latter subspecies reaches northeastern Venezuela. The Andes from southern Colombia to northern Peru appear to be the ancestral range of the genus.


Assuntos
Quirópteros , Animais , Quirópteros/genética , Filogenia , Ecossistema , DNA
3.
Natl Sci Rev ; 10(4): nwac174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124465

RESUMO

Highly specialized myrmecophagy (ant- and termite-eating) has independently evolved multiple times in species of various mammalian orders and represents a textbook example of phenotypic evolutionary convergence. We explored the mechanisms involved in this unique dietary adaptation and convergence through multi-omic analyses, including analyses of host genomes and transcriptomes, as well as gut metagenomes, in combination with validating assays of key enzymes' activities, in the species of three mammalian orders (anteaters, echidnas and pangolins of the orders Xenarthra, Monotremata and Pholidota, respectively) and their relatives. We demonstrate the complex and diverse interactions between hosts and their symbiotic microbiota that have provided adaptive solutions for nutritional and detoxification challenges associated with high levels of protein and lipid metabolisms, trehalose degradation, and toxic substance detoxification. Interestingly, we also reveal their spatially complementary cooperation involved in degradation of ants' and termites' chitin exoskeletons. This study contributes new insights into the dietary evolution of mammals and the mechanisms involved in the coordination of physiological functions by animal hosts and their gut commensals.

4.
Mol Phylogenet Evol ; 183: 107784, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37040825

RESUMO

Chromosomal variation among closely related taxa is common in both plants and animals, and can reduce rates of introgression as well as promote reproductive isolation and speciation. In mammals, studies relating introgression to chromosomal variation have tended to focus on a few model systems and typically characterized levels of introgression using small numbers of loci. Here we took a genome-wide approach to examine how introgression rates vary among four closely related horseshoe bats (Rhinolophus pearsoni group) that possess different diploid chromosome numbers (2n = 42, 44, 46, and 60) resulting from Robertsonian (Rb) changes (fissions/fusions). Using a sequence capture we obtained orthologous loci for thousands of nuclear loci, as well as mitogenomes, and performed phylogenetic and population genetic analyses. We found that the taxon with 2n = 60 was the first to diverge in this group, and that the relationships among the three other taxa (2n = 42, 44 and 46) showed discordance across our different analyses. Our results revealed signatures of multiple ancient introgression events between the four taxa, with evidence of mitonuclar discordance in phylogenetic trees and reticulation events in their evolutionary history. Despite this, we found no evidence of recent and/or ongoing introgression between taxa. Overall, our results indicate that the effects of Rb changes on the reduction of introgression are complicated and that these may contribute to reproductive isolation and speciation in concert with other factors (e.g. phenotypic and genic divergence).


Assuntos
Quirópteros , Animais , Filogenia , Quirópteros/genética , DNA Mitocondrial/genética , Evolução Biológica , Cromossomos
5.
Sci Adv ; 8(12): eabm6494, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333583

RESUMO

Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.


Assuntos
Quirópteros , Aclimatação , Adaptação Fisiológica/genética , Animais , Quirópteros/genética , Dieta , Genoma
6.
Integr Zool ; 17(1): 2-23, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34003577

RESUMO

Bats play crucial ecosystem services as seed dispersers, pollinators, controllers of insects, and nutrient recyclers. However, there has not been a thorough global review evaluating these roles in bats across all biogeographical regions of the world. We reviewed the literature published during the last two decades and identified 283 relevant studies: 78 dealt with the control of potential insect pests by bats, 80 related to the suppression of other arthropods, 60 on the dispersal of native or endemic seeds, 11 dealt with the dispersal of seeds of introduced plants, 29 on the pollination of native or endemic plants, 1 study on pollination of introduced plants, and 24 on the use of guano as fertilizer. Our literature search showed that queries combining the terms "seed dispersal," "insectivorous bats," "nectarivorous bats," "use of guano," and "ecosystem services" returned 577 studies, but half were experimental in nature. We found that the evaluation of ecosystem services by bats has been mostly conducted in the Neotropical and Palearctic regions. To detect differences across relevant studies, and to explain trends in the study of ecosystem services provided by bats, we performed generalized linear mixed models (GLMM) fitted with a Poisson distribution to analyze potential differences among sampling methods. We identified 409 bat species that provide ecosystem services, 752 insect species consumed by bats and 549 plant species either dispersed or pollinated by bats. Our review summarizes the importance of conserving bat populations and the ecological services they provide, which is especially important during the current pandemic.


Assuntos
Quirópteros , Ecossistema , Animais , Insetos , Polinização
7.
Biology (Basel) ; 10(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681111

RESUMO

In Neotropical bats, studies on bite force have focused mainly on differences in trophic ecology, and little is known about whether factors other than body size generate interspecific differences in bite force amongst insectivorous bats and, consequently, in their diets. We tested if bite force is related to skull morphology and also to diet in an assemblage of Neotropical insectivorous bats from tropical dry forests in the inter-Andean central valley in Colombia. It is predicted that the preference of prey types among insectivorous species is based on bite force and cranial characteristics. We also evaluated whether skull morphology varies depending on the species and sex. Cranial measurements and correlations between morphological variation and bite force were examined for 10 insectivorous bat species. We calculated the size-independent mechanical advantage for the mandibular (jaw) lever system. In all species, bite force increased with length of the skull and the jaw more than other cranial measurements. Obligate insectivorous species were morphologically different from the omnivorous Noctilio albiventris, which feeds primarily on insects, but also consumes fish and fruits. Our results show that bite force and skull morphology are closely linked to diets in Neotropical insectivorous bats and, consequently, these traits are key to the interactions within the assemblage and with their prey.

8.
Ecol Evol ; 11(20): 13756-13772, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707815

RESUMO

Bats in the family Phyllostomidae exhibit great diversity in skull size and morphology that reflects the degree of resource division and ecological overlap in the group. In particular, the subfamily Stenodermatinae has high morphological diversification associated with cranial and mandibular traits that are associated with the ability to consume the full range of available fruits (soft and hard).We analyzed craniodental traits and their relationship to the bite force in 343 specimens distributed in seven species of stenodermatine bats with two foraging strategies: nomadic and sedentary frugivory. We evaluated 19 traits related to feeding and bite force in live animals by correcting bite force with body size.We used a generalized linear model (GLM) and post hoc tests to determine possible relationships and differences between cranial traits, species, and sex. We also used Blomberg's K to measure the phylogenetic signal and phylogenetic generalized least-squares (PGLS) to ensure the phylogenetic independence of the traits.We found that smaller nomadic species, A. anderseni and A. phaeotis , have a similar bite force to the large species A. planirostris and A. lituratus; furthermore, P. helleri registered a bite force similar to that of the sedentary bat, S. giannae. Our study determined that all the features of the mandible and most of the traits of the skull have a low phylogenetic signal. Through the PGLS, we found that the diet and several cranial features (mandibular toothrow length, dentary length, braincase breadth, mastoid breadth, greatest length of skull, condylo-incisive length, and condylo-canine length) determined bite force performance among Stenodermatiane.Our results reinforce that skull size is a determining factor in the bite force, but also emphasize the importance of its relationships with morphology, ecology, and phylogeny of the species, which gives us a better understanding of the evolutionary adaptions of this highly diverse Neotropical bat group.

9.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34478643

RESUMO

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Assuntos
Quirópteros , Animais , Aves/metabolismo , Carboidratos , Quirópteros/genética , Metabolismo Energético , Glucose/metabolismo , Néctar de Plantas/metabolismo , Açúcares/metabolismo
11.
Mol Biol Evol ; 38(9): 3864-3883, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426843

RESUMO

Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation.


Assuntos
Metabolismo dos Carboidratos/genética , Quirópteros/genética , Dieta , Evolução Molecular , Seleção Genética , Adaptação Biológica/genética , Animais , Quirópteros/metabolismo , Comportamento Alimentar
12.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33693838

RESUMO

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Assuntos
Quirópteros , Animais , Evolução Biológica , Quirópteros/genética , Evolução Molecular , Filogenia
13.
Zootaxa ; 4846(1): zootaxa.4846.1.1, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33056749

RESUMO

We present a revision of the Neotropical bat genus Chiroderma, commonly known as big-eyed bats. Although species of Chiroderma have a wide distribution from western México to southern Brazil, species limits within Chiroderma are not clearly defined, as attested by identification errors in the literature, and there is no comprehensive revision of the genus that includes morphological and molecular data. Our review is based on phylogenetic analyses of two mitochondrial (COI and CYTB) and two nuclear (RAG2 and DBY) genes, coalescence analyses of mitochondrial genes, and morphological analyses including type specimens of all named taxa. We recognize seven species in three clades: the first clade includes (1) C. scopaeum Handley, 1966, endemic to western México and previously considered a subspecies of C. salvini; and (2) C. salvini Dobson, 1878, a taxon associated with montane forests, distributed from México to Bolivia; the second clade includes (3) C. improvisum Baker and Genoways, 1976, endemic to the Lesser Antilles, and (4) C. villosum Peters, 1860, widely distributed on the continental mainland and polytypic, with subspecies C. v. villosum and C. v. jesupi; and the third clade includes (5) the polytypic C. doriae Thomas, 1891, with C. d. doriae distributed in eastern Brazil and Paraguay, and C. d. vizottoi, occurring in northeastern Brazil; (6) C. trinitatum Goodwin, 1958, distributed from Trinidad to Amazonia; and (7) C. gorgasi Handley, 1960, distributed from Honduras to trans-Andean South America, previously considered a subspecies of C. trinitatum.


Assuntos
Quirópteros , Animais , Filogenia
14.
PLoS One ; 15(9): e0238261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970683

RESUMO

Although many processes of diversification have been described to explain variation of morphological traits within clades that have obvious differentiation among taxa, not much is known about these patterns in complexes of cryptic species. Molossus is a genus of bats that is mainly Neotropical, occurring from the southeastern United States to southern Argentina, including the Caribbean islands. Molossus comprises some groups of species that are morphologically similar but phylogenetically divergent, and other groups of species that are genetically similar but morphologically distinct. This contrast allows investigation of unequal trait diversification and the evolution of morphological and behavioural characters. In this study, we assessed the role of phylogenetic history in a genus of bat with three cryptic species complexes, and evaluated if morphology and behavior are evolving concertedly. The Genotype by Sequence genomic approach was used to build a species-level phylogenetic tree for Molossus and to estimate the ancestral states of morphological and echolocation call characters. We measured the correlation of phylogenetic distances to morphological and echolocation distances, and tested the relationship between morphology and behavior when the effect of phylogeny is removed. Morphology evolved via a mosaic of convergence and stasis, whereas call design was influenced exclusively through local adaptation and convergent evolution. Furthermore, the frequency of echolocation calls is negatively correlated with the size of the bat, but other characters do not seem to be evolving in concert. We hypothesize that slight variation in both morphology and behaviour among species of the genus might result from niche specialization, and that traits evolve to avoid competition for resources in similar environments.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Quirópteros/anatomia & histologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Filogenia , Animais , Especificidade da Espécie
15.
Zookeys ; 918: 41-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218685

RESUMO

Since the last systematic review of Chiroderma (big-eyed bats) more than two decades ago, we report on biodiversity surveys that expand the distribution and species diversity of this Neotropical genus. The Caribbean endemic species Chiroderma improvisum is documented for the first time from Nevis in the northern Lesser Antilles. A broader geographic sampling for a molecular analysis identifies a paraphyletic relationship in Chiroderma trinitatum with respect to Chiroderma doriae. Cis-Andean populations of C. trinitatum are most closely related to the morphologically distinctive and allopatrically distributed C. doriae in the Cerrado and Atlantic Forest of Brazil and Paraguay. The sister taxon to this grouping includes trans-Andean populations of C. trinitatum, which we recommend to elevate to species status as C. gorgasi. This is an example of a cryptic species because C. gorgasi was previously considered morphologically similar to C. trinitatum, but more detailed examination revealed that it lacks a posterolabial accessory cusp on the lower second premolar and has a narrower breadth of the braincase. We provide an amended description of Chiroderma gorgasi.

16.
Data Brief ; 29: 105276, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32123708

RESUMO

The mastiff bat Molossus is a broadly distributed genus within the family Molossidae. Molossus includes groups of species that are either morphologically or genetically very similar, rendering the taxonomy of this genus confusing and unstable. In this paper, we provide inferred phylogenetic relationships of Molossus based on the genotype by sequencing approach from 189 specimens of three species of New World mastiff bats (Molossus, Promops, and Eumops). We also present data on divergent tree topologies produced by alignments using de novo and reference genome approaches and distinct phylogenetic methods (maximum likelihood and coalescent approaches). These data provide the first highly resolved phylogenetic tree for Molossus, not recovered by previous studies using Sanger sequencing. Our dataset brings new insights on relationships among species and show how different approaches might affect phylogenetic resolution and topologies.

17.
Ecol Evol ; 10(1): 389-409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993120

RESUMO

Historical events, habitat preferences, and geographic barriers might result in distinct genetic patterns in insular versus mainland populations. Comparison between these two biogeographic systems provides an opportunity to investigate the relative role of isolation in phylogeographic patterns and to elucidate the importance of evolution and demographic history in population structure. Herein, we use a genotype-by-sequencing approach (GBS) to explore population structure within three species of mastiff bats (Molossus molossus, M. coibensis, and M. milleri), which represent different ecological histories and geographical distributions in the genus. We tested the hypotheses that oceanic straits serve as barriers to dispersal in Caribbean bats and that isolated island populations are more likely to experience genetic drift and bottlenecks in comparison with highly connected ones, thus leading to different phylogeographic patterns. We show that population structures vary according to general habitat preferences, levels of population isolation, and historical fluctuations in climate. In our dataset, mainland geographic barriers played only a small role in isolation of lineages. However, oceanic straits posed a partial barrier to the dispersal for some populations within some species (M. milleri), but do not seem to disrupt gene flow in others (M. molossus). Lineages on distant islands undergo genetic bottlenecks more frequently than island lineages closer to the mainland, which have a greater exchange of haplotypes.

18.
Mol Phylogenet Evol ; 143: 106690, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760152

RESUMO

Mammals are one of the better known groups of animals, and in the Neotropics bats typically comprise about half of the mammalian species diversity. But, well resolved species-level phylogenies are still lacking for most taxa of bats. One broadly distributed genus is the mastiff bats, Molossus. Species within this genus are morphologically very similar, which results in a confusing and unstable taxonomy. In addition, low levels of genetic divergence among some clades make resolution of phylogenetic relationships difficult. Most authors recognize Molossus as being monophyletic, however, phylogenetic relationships within the genus remain poorly understood based on traditional Sanger sequencing of individual genes. We propose a more comprehensive framework based on large-scale genomic data derived from Next Generation Sequencing techniques to better understand evolutionary relationships within a group of closely related species with a rich taxonomic history. In this study, we utilized the NGS method of Genotype by Sequencing (GBS) to test the monophyly of the genus, understand evolutionary relationships within Molossus and investigate the genetic integrity of currently recognized species. Given that both de novo and reference genome pipelines are often used in the assembly of Single Nucleotide Polymorphism data from GBS, and that several tree inference methodologies have been proposed for SNP data, we test whether different alignments and phylogenetic approaches produce similar results. We also examined how the process of SNP identification and mapping can affect the consistency of the analyses. Our data provide the first high resolution phylogeny for the genus Molossus, bringing new insights into recognition of species boundaries and relationships among taxa. This study clarifies the taxonomy of Molossus and elevates the number of species in the genus from 11 to 14. We suggest the revalidation of the names M. nigricans, and M. fluminensis, which were synonymized under the name M. rufus; and M. bondae, previously synonymized under the name M. currentium. Different alignments and phylogenetic inferences produce consistent results, supporting use of SNP approach in addressing evolutionary questions on a macroevolutionary scale where the genetic distance among clades is low.


Assuntos
Quirópteros/genética , Polimorfismo de Nucleotídeo Único , Animais , Evolução Biológica , Quirópteros/classificação , Feminino , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Funções Verossimilhança , Masculino , Filogenia , Análise de Componente Principal , Análise de Sequência de DNA
19.
Curr Zool ; 65(5): 579-588, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31616489

RESUMO

Among mammalian phylogenies, those characterized by rapid radiations are particularly problematic. The New World monkeys (NWMs, Platyrrhini) comprise 3 families and 7 subfamilies, which radiated within a relatively short time period. Accordingly, their phylogenetic relationships are still largely disputed. In the present study, 56 nuclear non-coding loci, including 33 introns (INs) and 23 intergenic regions (IGs), from 20 NWM individuals representing 18 species were used to investigate phylogenetic relationships among families and subfamilies. Of the 56 loci, 43 have not been used in previous NWM phylogenetics. We applied concatenation and coalescence tree-inference methods, and a recently proposed question-specific approach to address NWM phylogeny. Our results indicate incongruence between concatenation and coalescence methods for the IN and IG datasets. However, a consensus was reached with a single tree topology from all analyses of combined INs and IGs as well as all analyses of question-specific loci using both concatenation and coalescence methods, albeit with varying degrees of statistical support. In detail, our results indicated the sister-group relationships between the families Atelidae and Pitheciidae, and between the subfamilies Aotinae and Callithrichinae among Cebidae. Our study provides insights into the disputed phylogenetic relationships among NWM families and subfamilies from the perspective of multiple non-coding loci and various tree-inference approaches. However, the present phylogenetic framework needs further evaluation by adding more independent sequence data and a deeper taxonomic sampling. Overall, our work has important implications for phylogenetic studies dealing with rapid radiations.

20.
Integr Zool ; 14(3): 306-317, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30688011

RESUMO

Ribonuclease 6 (RNase6 or RNase K6) is a protein that belongs to a superfamily thought to be the sole verte-brate-specific enzyme known for a wide range of physiological functions, including digestion, cytotoxicity, angiogenesis, male reproduction and host defense. In our study, 51 functional genes and 11 pseudogenes were identified from 27 Rodentia species. Intriguingly, in the 3 main lineages of rodents there were multiple RNase6s identified in all species of Ctenohystrica, whereas only a single RNase6 was observed in other Rodentia species examined except for 2 species in the mouse-related clade. The evolutionary scenario of "birth (gene duplication) and death (gene deactivation)" and gene sorting have been demonstrated in Ctenohystrica. In addition, bursts of positive selection, diversification of isoelectric point and positive net charge have been identified in Ctenohystrica, especially at two key sites that are involved in antimicrobial function. Site Trp30 has undergone positive selection and Ile45 has changed into other residues in Group B and Group C of the Ctenohystrica. Our results demonstrated a complex and intriguing evolutionary pattern of rodent RNase6, and indicated that functional modification may have occurred, which establishes an important theoretical foundation for future functional assays in rodent RNase6.


Assuntos
Adaptação Fisiológica/genética , Endorribonucleases/genética , Evolução Molecular , Roedores/genética , Animais , Regulação Enzimológica da Expressão Gênica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...