Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 81, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532181

RESUMO

Although pulmonary vein isolation (PVI) gaps and extrapulmonary vein triggers contribute to recurrence after atrial fibrillation (AF) ablation, their precise mechanisms remain unproven. Our study assessed the impact of PVI gaps on rhythm outcomes using a human AF digital twin. We included 50 patients (76.0% with persistent AF) who underwent catheter ablation with a realistic AF digital twin by integrating computed tomography and electroanatomical mapping. We evaluated the final rhythm status, including AF and atrial tachycardia (AT), across 600 AF episodes, considering factors including PVI level, PVI gap number, and pacing locations. Our findings revealed that antral PVI had a significantly lower ratio of AF at the final rhythm (28% vs. 56%, p = 0.002) than ostial PVI. Increasing PVI gap numbers correlated with an increased ratio of AF at the final rhythm (p < 0.001). Extra-PV induction yielded a higher ratio of AF at the final rhythm than internal PV induction (77.5% vs. 59.0%, p < 0.001). In conclusion, our human AF digital twin model helped assess AF maintenance mechanisms. Clinical trial registration: https://www.clinicaltrials.gov ; Unique identifier: NCT02138695.

3.
Korean Circ J ; 52(9): 699-711, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35927040

RESUMO

BACKGROUND AND OBJECTIVES: We investigated whether extra-pulmonary vein (PV) ablation targeting a high maximal slope of the action potential duration restitution curve (Smax) improves the rhythm outcome of persistent atrial fibrillation (PeAF) ablation. METHODS: In this open-label, multi-center, randomized, and controlled trial, 178 PeAF patients were randomized with 1:1 ratio to computational modeling-guided virtual Smax ablation (V-Smax) or empirical ablation (E-ABL) groups. Smax maps were generated by computational modeling based on atrial substrate maps acquired during clinical procedures in sinus rhythm. Smax maps were generated during the clinical PV isolation (PVI). The V-Smax group underwent an additional extra-PV ablation after PVI targeting the virtual high Smax sites. RESULTS: After a mean follow-up period of 12.3±5.2 months, the clinical recurrence rates (25.6% vs. 23.9% in the V-Smax and the E-ABL group, p=0.880) or recurrence appearing as atrial tachycardia (11.1% vs. 5.7%, p=0.169) did not differ between the 2 groups. The post-ablation cardioversion rate was higher in the V-Smax group than E-ABL group (14.4% vs. 5.7%, p=0.027). Among antiarrhythmic drug-free patients (n=129), the AF freedom rate was 78.7% in the V-Smax group and 80.9% in the E-ABL group (p=0.776). The total procedure time was longer in the V-Smax group (p=0.008), but no significant difference was found in the major complication rates (p=0.497) between the groups. CONCLUSIONS: Unlike a dominant frequency ablation, the computational modeling-guided V-Smax ablation did not improve the rhythm outcome of the PeAF ablation and had a longer procedure time. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02558699.

4.
Front Cardiovasc Med ; 9: 942998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928934

RESUMO

Introduction: Atrial fibrillation (AF) is a heritable disease, and the paired-like homeodomain transcription factor 2 (PITX2) gene is highly associated with AF. We explored the differences in the circumferential pulmonary vein isolation (CPVI), which is the cornerstone procedure for AF catheter ablation, additional high dominant frequency (DF) site ablation, and antiarrhythmic drug (AAD) effects according to the patient genotype (wild-type and PITX2 +/- deficient) using computational modeling. Methods: We included 25 patients with AF (68% men, 59.8 ± 9.8 years of age, 32% paroxysmal AF) who underwent AF catheter ablation to develop a realistic computational AF model. The ion currents for baseline AF and the amiodarone, dronedarone, and flecainide AADs according to the patient genotype (wild type and PITX2 +/- deficient) were defined by relevant publications. We tested the virtual CPVI (V-CPVI) with and without DF ablation (±DFA) and three virtual AADs (V-AADs, amiodarone, dronedarone, and flecainide) and evaluated the AF defragmentation rates (AF termination or changes to regular atrial tachycardia (AT), DF, and maximal slope of the action potential duration restitution curves (Smax), which indicates the vulnerability of wave-breaks. Results: At the baseline AF, mean DF (p = 0.003), and Smax (p < 0.001) were significantly lower in PITX2 +/- deficient patients than wild-type patients. In the overall AF episodes, V-CPVI (±DFA) resulted in a higher AF defragmentation relative to V-AADs (65 vs. 42%, p < 0.001) without changing the DF or Smax. Although a PITX2 +/- deficiency did not affect the AF defragmentation rate after the V-CPVI (±DFA), V-AADs had a higher AF defragmentation rate (p = 0.014), lower DF (p < 0.001), and lower Smax (p = 0.001) in PITX2 +/- deficient AF than in wild-type patients. In the clinical setting, the PITX2 +/- genetic risk score did not affect the AF ablation rhythm outcome (Log-rank p = 0.273). Conclusion: Consistent with previous clinical studies, the V-CPVI had effective anti-AF effects regardless of the PITX2 genotype, whereas V-AADs exhibited more significant defragmentation or wave-dynamic change in the PITX2 +/- deficient patients.

5.
Front Physiol ; 13: 846620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370797

RESUMO

Background: Although pulmonary vein isolation (PVI) gaps contribute to recurrence after atrial fibrillation (AF) catheter ablation, the mechanism is unclear. We used realistic computational human AF modeling to explore the AF wave-dynamic changes of PVI with gaps (PVI-gaps). Methods: We included 40 patients (80% male, 61.0 ± 9.8 years old, 92.5% persistent AF) who underwent AF catheter ablation to develop our realistic computational AF model. We compared the effects of a complete PVI (CPVI) and PVI-gap (2-mm × 4) on the AF wave-dynamics by evaluating the dominant frequency (DF), spatial change of DF, maximal slope of the action potential duration restitution curve (Smax), and AF defragmentation rate (termination or change to atrial tachycardia), and tested the effects of additional virtual interventions and flecainide on ongoing AF with PVI-gaps. Results: Compared with the baseline AF, CPVIs significantly reduced extra-PV DFs (p < 0.001), but PVI-gaps did not. COV-DFs were greater after CPVIs than PVI-gaps (p < 0.001). Neither CPVIs nor PVI-gaps changed the mean Smax. CPVIs resulted in higher AF defragmentation rates (80%) than PVI-gaps (12.5%, p < 0.001). In ongoing AF after PVI-gaps, the AF defragmentation rates after a wave-breaking gap ablation, extra-PV DF ablation, or flecainide were 60.0, 34.3, and 25.7%, respectively (p = 0.010). Conclusion: CPVIs effectively reduced the DF, increased its spatial heterogeneity in extra-PV areas, and offered better anti-AF effects than extra-PV DF ablation or additional flecainide in PVI-gap conditions.

6.
Front Cardiovasc Med ; 9: 838646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310982

RESUMO

Introduction: Although the dominant frequency (DF) localizes the reentrant drivers and the maximal slope of the action potential duration (APD) restitution curve (Smax) reflects the tendency of the wave-break, their interaction has never been studied. We hypothesized that DF ablation has different effects on atrial fibrillation (AF) depending on Smax. Methods: We studied the DF and Smax in 25 realistic human persistent AF model samples (68% male, 60 ± 10 years old). Virtual AF was induced by ramp pacing measuring Smax, followed by spatiotemporal DF evaluation for 34 s. We assessed the DF ablation effect depending on Smax in both computational modeling and a previous clinical trial, CUVIA-AF (170 patients with persistent AF, 70.6% male, 60 ± 11 years old). Results: Mean DF had an inverse relationship with Smax regardless of AF acquisition timing (p < 0.001). Virtual DF ablations increased the defragmentation rate compared to pulmonary vein isolation (PVI) alone (p = 0.015), especially at Smax <1 (61.5 vs. 7.7%, p = 0.011). In post-DF ablation defragmentation episodes, DF was significantly higher (p = 0.002), and Smax was lower (p = 0.003) than in episodes without defragmentation. In the post-hoc analysis of CUVIA-AF2, we replicated the inverse relationship between Smax and DF (r = -0.47, p < 0.001), and we observed better rhythm outcomes of clinical DF ablations in addition to a PVI than of empirical PVI at Smax <1 [hazard ratio 0.45, 95% CI (0.22-0.89), p = 0.022; log-rank p = 0.021] but not at ≥ 1 (log-rank p = 0.177). Conclusion: We found an inverse relationship between DF and Smax and the outcome of DF ablation after PVI was superior at the condition with Smax <1 in both in-silico and clinical trials.

8.
Front Cardiovasc Med ; 8: 772665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957255

RESUMO

Background: Clinical recurrence after atrial fibrillation catheter ablation (AFCA) still remains high in patients with persistent AF (PeAF). We investigated whether an extra-pulmonary vein (PV) ablation targeting the dominant frequency (DF) extracted from electroanatomical map-integrated AF computational modeling improves the AFCA rhythm outcome in patients with PeAF. Methods: In this open-label, randomized, multi-center, controlled trial, 170 patients with PeAF were randomized at a 1:1 ratio to the computational modeling-guided virtual DF (V-DF) ablation and empirical PV isolation (E-PVI) groups. We generated a virtual dominant frequency (DF) map based on the atrial substrate map obtained during the clinical AF ablation procedure using computational modeling. This simulation was possible within the time of the PVI procedure. V-DF group underwent extra-PV V-DF ablation in addition to PVI, but DF information was not notified to the operators from the core lab in the E-PVI group. Results: After a mean follow-up period of 16.3 ± 5.3 months, the clinical recurrence rate was significantly lower in the V-DF than with E-PVI group (P = 0.018, log-rank). Recurrences appearing as atrial tachycardias (P = 0.145) and the cardioversion rates (P = 0.362) did not significantly differ between the groups. At the final follow-up, sinus rhythm was maintained without any AADs in 74.7% in the V-DF group and 48.2% in the E-PVI group (P < 0.001). No significant difference was found in the major complication rates (P = 0.489) or total procedure time (P = 0.513) between the groups. The V-DF ablation was independently associated with a reduced AF recurrence after AFCA [hazard ratio: 0.51 (95% confidence interval: 0.30-0.88); P = 0.016]. Conclusions: The computational modeling-guided V-DF ablation improved the rhythm outcome of AFCA in patients with PeAF. Clinical Trial Registration: Clinical Research Information Service, CRIS identifier: KCT0003613.

9.
Front Physiol ; 12: 733543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630153

RESUMO

Background: We previously reported that a computational modeling-guided antiarrhythmic drug (AAD) test was feasible for evaluating multiple AADs in patients with atrial fibrillation (AF). We explored the anti-AF mechanisms of AADs and spatial change in the AF wave-dynamics by a realistic computational model. Methods: We used realistic computational modeling of 25 AF patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal AF) reflecting the anatomy, histology, and electrophysiology of the left atrium (LA) to characterize the effects of five AADs (amiodarone, sotalol, dronedarone, flecainide, and propafenone). We evaluated the spatial change in the AF wave-dynamics by measuring the mean dominant frequency (DF) and its coefficient of variation [dominant frequency-coefficient of variation (DF-COV)] in 10 segments of the LA. The mean DF and DF-COV were compared according to the pulmonary vein (PV) vs. extra-PV, maximal slope of the restitution curves (Smax), and defragmentation of AF. Results: The mean DF decreased after the administration of AADs in the dose dependent manner (p < 0.001). Under AADs, the DF was significantly lower (p < 0.001) and COV-DF higher (p = 0.003) in the PV than extra-PV region. The mean DF was significantly lower at a high Smax (≥1.4) than a lower Smax condition under AADs. During the episodes of AF defragmentation, the mean DF was lower (p < 0.001), but the COV-DF was higher (p < 0.001) than that in those without defragmentation. Conclusions: The DF reduction with AADs is predominant in the PVs and during a high Smax condition and causes AF termination or defragmentation during a lower DF and spatially unstable (higher DF-COV) condition.

10.
Front Physiol ; 12: 650449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054570

RESUMO

Background: The efficacy of antiarrhythmic drugs (AAD) can vary in patients with atrial fibrillation (AF), and the PITX2 gene affects the responsiveness of AADs. We explored the virtual AAD (V-AAD) responses between wild-type and PITX2 +/--deficient AF conditions by realistic in silico AF modeling. Methods: We tested the V-AADs in AF modeling integrated with patients' 3D-computed tomography and 3D-electroanatomical mapping, acquired in 25 patients (68% male, 59.8 ± 9.8 years old, 32.0% paroxysmal type). The ion currents for the PITX2 +/- deficiency and each AAD (amiodarone, sotalol, dronedarone, flecainide, and propafenone) were defined based on previous publications. Results: We compared the wild-type and PITX2 +/- deficiency in terms of the action potential duration (APD90), conduction velocity (CV), maximal slope of restitution (Smax), and wave-dynamic parameters, such as the dominant frequency (DF), phase singularities (PS), and AF termination rates according to the V-AADs. The PITX2 +/--deficient model exhibited a shorter APD90 (p < 0.001), a lower Smax (p < 0.001), mean DF (p = 0.012), PS number (p < 0.001), and a longer AF cycle length (AFCL, p = 0.011). Five V-AADs changed the electrophysiology in a dose-dependent manner. AAD-induced AFCL lengthening (p < 0.001) and reductions in the CV (p = 0.033), peak DF (p < 0.001), and PS number (p < 0.001) were more significant in PITX2 +/--deficient than wild-type AF. PITX2 +/--deficient AF was easier to terminate with class IC AADs than the wild-type AF (p = 0.018). Conclusions: The computational modeling-guided AAD test was feasible for evaluating the efficacy of multiple AADs in patients with AF. AF wave-dynamic and electrophysiological characteristics are different among the PITX2-deficient and the wild-type genotype models.

11.
J Physiol ; 598(17): 3597-3612, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32495943

RESUMO

KEY POINTS: The interatrial conduction, including Bachmann's bundle, the posterior septal conduction, the anterior septal conduction, and the cavo-tricuspid isthmus, contributes to the maintenance mechanisms of atrial fibrillation in a 3D biatrial model. The interatrial conduction ablation including a cavo-tricuspid isthmus ablation significantly affects the wave dynamics of atrial fibrillation (AF) and facilitates the AF termination or atrial tachycardia conversion of the AF after the circumferential pulmonary vein isolation. Additional cavo-tricuspid isthmus ablation after the circumferential pulmonary vein isolation improves long-term rhythm outcome after clinical AF catheter ablation. ABSTRACT: Although it is known that atrial fibrillation (AF) is mainly a left atrial (LA) disease, the role of the right atrium (RA) and interatrial conduction (IAC), including the cavo-tricuspid isthmus (CTI), has not been clearly defined. We tested AF wave dynamics with or without IAC in computational modelling and the rhythm outcome of AF catheter ablation (AFCA) including CTI ablation in clinical cohort data. We evaluated the dominant frequency (DF) in 3D biatrial AF simulations integrated with 3D-computed tomograms obtained from 10 patients. The IAC was implemented at Bachmann's bundle, posterior septum and the CTI. After virtual circumferential PV isolation (CPVI), we disconnected IACs one by one, and observed the wave dynamics. We compared the long-term rhythm outcome after CPVI alone and additional CTI ablation in 846 patients with AFCA. LA-DF was higher than RA-DF in AF (P < 0.001). After CPVI, the DF decreased significantly by additional IAC ablation (P = 0.003), especially in the LA (P = 0.016). The amount of DF reduction (P = 0.020) and rates of AF termination (P < 0.001) or AT conversion (P = 0.021) were significantly higher after IAC ablations including CTI than those without. In clinical AFCA, the AF recurrence rate was significantly lower in patients with additional CTI ablation than CPVI alone during 25 ± 20 months' follow-up (hazard ratio 0.60 [0.46-0.79], P < 0.001, Log rank P < 0.001). IAC contributes to the maintenance mechanism of AF, and IAC including CTI ablation affects AF wave dynamics, facilitating AF termination in 3D biatrial modelling. Additional CTI ablation after CPVI improves the long-term rhythm outcome in clinical AFCA, potentially in a paroxysmal type with accompanying atrial flutter, or atrial dimension close to normal.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Frequência Cardíaca , Humanos , Resultado do Tratamento
12.
Sci Rep ; 10(1): 2417, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051487

RESUMO

We previously reported the feasibility and efficacy of a simulation-guided clinical catheter ablation of atrial fibrillation (AF) in an in-silico AF model. We developed a highly efficient realistic AF model reflecting the patient endocardial voltage and local conduction and tested its clinical feasibility. We acquired > 500 endocardial bipolar electrograms during right atrial pacing at the beginning of the AF ablation procedures. Based on the clinical bipolar electrograms, we generated simulated voltage maps by applying fibrosis and local activation maps adjusted for the fiber orientation. The software's accuracy (CUVIA2.5) was retrospectively tested in 17 patients and feasibility prospectively in 10 during clinical AF ablation. Results: We found excellent correlations between the clinical and simulated voltage maps (R = 0.933, p < 0.001) and clinical and virtual local conduction (R = 0.958, p < 0.001). The proportion of virtual local fibrosis was 15.4, 22.2, and 36.9% in the paroxysmal AF, persistent AF, and post-pulmonary vein isolation (PVI) states, respectively. The reconstructed virtual bipolar electrogram exhibited a relatively good similarities of morphology to the local clinical bipolar electrogram (R = 0.60 ± 0.08, p < 0.001). Feasibility testing revealed an in situ procedural computing time from the clinical data acquisition to wave-dynamics analyses of 48.2 ± 4.9 min. All virtual analyses were successfully achieved during clinical PVI procedures. We developed a highly efficient, realistic, in situ procedural simulation model reflective of individual anatomy, fiber orientation, fibrosis, and electrophysiology that can be applied during AF ablation.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Ablação por Cateter , Átrios do Coração/patologia , Idoso , Fibrilação Atrial/fisiopatologia , Ablação por Cateter/métodos , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Estudos de Viabilidade , Feminino , Fibrose , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Modelos Cardiovasculares , Estudos Retrospectivos , Software
13.
J Am Heart Assoc ; 8(22): e013985, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31726961

RESUMO

Background We previously reported the benefit of linear ablation from the superior vena cava to the right atrial septum (SVC-L) within a year after circumferential pulmonary vein isolation (CPVI) in patients with paroxysmal atrial fibrillation (AF). We explored the long-term effects of SVC-L and its potential related mechanisms. Methods and Results Among 2140 consecutive patients with AF ablation, we included 614 patients (73.3% male, aged 57.8±10.7 years, 13.7% with persistent AF) who did not undergo an extra-pulmonary vein left atrial ablation after propensity score matching; of those, 307 had additional SVC-L and 307 had CPVI alone. We evaluated the heart rate variability and computational modeling study to explore mechanisms. Although the procedure time was longer in the SVC-L group than the CPVI group (P<0.001), the complication rates did not differ (P=0.560). During 40.5±24.4 months of follow-up, the rhythm outcome was significantly better in the SVC-L group than the CPVI group (log rank, P<0.001). At 2-year follow-up of heart rate variability, a significantly higher mean heart rate (P=0.018) and a lower ratio of low/high-frequency components (P=0.011) were found with SVC-L than CPVI alone. In realistic in silico biatrial modeling, which reflected the electroanatomies of 10 patients, SVC-L significantly reduced biatrial dominant frequency compared with CPVI alone (P<0.001) and increased AF termination and defragmentation rates (P=0.033). Conclusions SVC-L ablation in addition to CPVI significantly improved the long-term rhythm outcome over 2 years after AF catheter ablation by mechanisms involving autonomic modulation and AF organization.


Assuntos
Fibrilação Atrial/cirurgia , Septo Interatrial/cirurgia , Ablação por Cateter/métodos , Gânglios Autônomos/cirurgia , Veias Pulmonares/cirurgia , Veia Cava Superior/cirurgia , Idoso , Sistema Nervoso Autônomo , Feminino , Coração/inervação , Átrios do Coração , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Duração da Cirurgia , Modelagem Computacional Específica para o Paciente , Complicações Pós-Operatórias/epidemiologia , Resultado do Tratamento
15.
PLoS Comput Biol ; 15(4): e1006765, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951529

RESUMO

Although bipolar electrograms (Bi-egms) are commonly used for catheter mapping and ablation of cardiac arrhythmias, the accuracy and reproducibility of Bi-egms have not been evaluated. We aimed to clarify the influence of the catheter orientation (CO), catheter contact angle (CA), local conduction velocity (CV), scar size, and catheter type on the Bi-egm morphology using an in silico 3-dimensional realistic model of atrial fibrillation. We constructed a 3-dimensional, realistic, in silico left atrial model with activation wave propagation including bipolar catheter models. Bi-egms were obtained by computing the extracellular potentials from the distal and proximal electrodes. The amplitude and width were measured on virtual Bi-egms obtained under different conditions created by changing the CO according to the wave direction, catheter-atrial wall CA, local CV, size of the non-conductive area, and catheter type. Bipolar voltages were also compared between virtual and clinically acquired Bi-egms. Bi-egm amplitudes were lower for a perpendicular than parallel CO relative to the wave direction (p<0.001), lower for a 90° than 0° CA (p<0.001), and lower for a CV of 0.13m/s than 0.48m/s (p<0.001). Larger sized non-conductive areas were associated with a decreased bipolar amplitude (p<0.001) and increased bipolar width (p<0.001). Among three commercially available catheters (Orion, Pentaray, and Thermocool), those with more narrowly spaced and smaller electrodes produced higher voltages on the virtual Bi-egms (p<0.001). Multiple factors including the CO, CA, CV, and catheter design significantly influence the Bi-egm morphology. Universal voltage cut-off values may not be appropriate for bipolar voltage-guided substrate mapping.


Assuntos
Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/instrumentação , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Ablação por Cateter/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Eletrodos , Técnicas Eletrofisiológicas Cardíacas/estatística & dados numéricos , Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/cirurgia , Humanos , Modelos Cardiovasculares , Reprodutibilidade dos Testes , Interface Usuário-Computador
16.
Front Physiol ; 10: 1512, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920716

RESUMO

OBJECTIVE: Catheter ablation of persistent atrial fibrillation (AF) is still challenging, no optimal extra-pulmonary vein lesion set is known. We previously reported the clinical feasibility of computational modeling-guided AF catheter ablation. METHODS: We randomly assigned 118 patients with persistent AF (77.8% men, age 60.8 ± 9.9 years) to the computational modeling-guided ablation group (53 patients) and the empirical ablation group (55 patients) based on the operators' experience. For virtual ablation, four virtual linear and one electrogram-guided lesion sets were tested on patient heart computed tomogram-based models, and the lesion set with the fastest termination time was reported to the operator in the modeling-guided ablation group. The primary outcome was freedom from atrial tachyarrhythmias lasting longer than 30 s after a single procedure. RESULTS: During 31.5 ± 9.4 months, virtual ablation procedures were available in 95.2% of the patients (108/118). Clinical recurrence rate was significantly lower after a modeling-guided ablation than after an empirical ablation (20.8 vs. 40.0%, log-rank p = 0.042). Modeling-guided ablation was independently associated with a better long-term rhythm outcome of persistent AF ablation (HR = 0.29 [0.12-0.69], p = 0.005). The rhythm outcome of the modeling-guided ablation showed better trends in males, non-obese patients with a less remodeled atrium (left atrial dimension < 50 mm), ejection fraction ≥ 50%, and those without hypertension or diabetes (p < 0.01). There were no significant differences between the groups for the total procedure time (p = 0.403), ablation time (p = 0.510), and major complication rate (p = 0.900). CONCLUSION: Among patients with persistent AF, the computational modeling-guided ablation was superior to the empirical catheter ablation regarding the rhythm outcome. CLINICAL TRIAL REGISTRATION: This study was registered with the ClinicalTrials.gov, number NCT02171364.

17.
Circ J ; 83(1): 32-40, 2018 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-30429429

RESUMO

BACKGROUND: The arrhythmogenic role of complex atrial morphology has not yet been clearly elucidated. We hypothesized that bumpy tissue geometry can induce action potential duration (APD) dispersion and wavebreak in atrial fibrillation (AF). Methods and Results: We simulated a 2D-bumpy atrial model by varying the degree of bumpiness, and 3D-left atrial (LA) models integrated by LA computed tomographic (CT) images taken from 14 patients with persistent AF. We also analyzed wave-dynamic parameters with bipolar electrograms during AF and compared them with LA-CT geometry in 30 patients with persistent AF. In the 2D-bumpy model, APD dispersion increased (P<0.001) and wavebreak occurred spontaneously when the surface bumpiness was greater, showing phase transition-like behavior (P<0.001). The bumpiness gradient 2D-model showed that spiral wave drifted in the direction of higher bumpiness, and phase singularity (PS) points were mostly located in areas with higher bumpiness. In the 3D-LA model, PS density was higher in the LA appendage (LAA) compared with other parts of the LA (P<0.05). In 30 persistent-AF patients, the surface bumpiness of LAA was 5.8-fold that of other LA parts (P<0.001), and exceeded critical bumpiness to induce wavebreak. Wave dynamics complexity parameters were consistently dominant in the LAA (P<0.001). CONCLUSIONS: Bumpy tissue geometry promoted APD dispersion, wavebreak, and spiral wave drift in in-silico human atrial tissue, and corresponded to clinical electroanatomical maps.


Assuntos
Arritmias Cardíacas , Apêndice Atrial , Fibrilação Atrial , Modelos Cardiovasculares , Tomografia Computadorizada por Raios X , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Apêndice Atrial/diagnóstico por imagem , Apêndice Atrial/patologia , Apêndice Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Humanos , Masculino
18.
PLoS One ; 12(12): e0190398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29287119

RESUMO

BACKGROUND: We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. METHODS: We integrated 3D CT images of left atrium obtained from 10 patients with persistent AF (80% male, 61.8±13.5 years old) into in-silico AF model. We compared AF maintenance durations (max 300s), spatiotemporal stabilities of DF, phase singularity (PS) number, life-span of PS, and AF termination or defragmentation rates after virtual DF ablation with 5 different CV conditions (0.2, 0.3, 0.4, 0.5, and 0.6m/s). RESULTS: 1. AF maintenance duration (p<0.001), spatiotemporal mean variance of DF (p<0.001), and the number of PS (p = 0.023) showed CV dependent bimodal patterns (highest at CV0.4m/s and lowest at CV0.6m/s) consistently. 2. After 10% highest DF ablation, AF defragmentation rates were the lowest at CV0.4m/s (37.8%), but highest at CV0.5 and 0.6m/s (all 100%, p<0.001). 3. In the episodes with AF termination or defragmentation followed by 10% highest DF ablation, baseline AF maintenance duration was shorter (p<0.001), spatiotemporal mean variance of DF was lower (p = 0.014), and the number of PS was lower (p = 0.004) than those with failed AF defragmentation after DF ablation. CONCLUSION: Virtual ablation of DF, which may indicate AF driver, was more likely to terminate or defragment AF with spatiotemporally stable DF, but not likely to do so in long-lasting and sustained AF conditions, depending on CV.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Idoso , Algoritmos , Ablação por Cateter/instrumentação , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Front Physiol ; 8: 792, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075201

RESUMO

Objective: Radiofrequency catheter ablation for persistent atrial fibrillation (PeAF) still has a substantial recurrence rate. This study aims to investigate whether an AF ablation lesion set chosen using in-silico ablation (V-ABL) is clinically feasible and more effective than an empirically chosen ablation lesion set (Em-ABL) in patients with PeAF. Methods: We prospectively included 108 patients with antiarrhythmic drug-resistant PeAF (77.8% men, age 60.8 ± 9.9 years), and randomly assigned them to the V-ABL (n = 53) and Em-ABL (n = 55) groups. Five different in-silico ablation lesion sets [1 pulmonary vein isolation (PVI), 3 linear ablations, and 1 electrogram-guided ablation] were compared using heart-CT integrated AF modeling. We evaluated the feasibility, safety, and efficacy of V-ABL compared with that of Em-ABL. Results: The pre-procedural computing time for five different ablation strategies was 166 ± 11 min. In the Em-ABL group, the earliest terminating blinded in-silico lesion set matched with the Em-ABL lesion set in 21.8%. V-ABL was not inferior to Em-ABL in terms of procedure time (p = 0.403), ablation time (p = 0.510), and major complication rate (p = 0.900). During 12.6 ± 3.8 months of follow-up, the clinical recurrence rate was 14.0% in the V-ABL group and 18.9% in the Em-ABL group (p = 0.538). In Em-ABL group, clinical recurrence rate was significantly lower after PVI+posterior box+anterior linear ablation, which showed the most frequent termination during in-silico ablation (log-rank p = 0.027). Conclusions: V-ABL was feasible in clinical practice, not inferior to Em-ABL, and predicts the most effective ablation lesion set in patients who underwent PeAF ablation.

20.
PLoS One ; 12(8): e0182174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28827810

RESUMO

BACKGROUND/AIMS: Atrial anatomy and thickness may affect the electrical wave-dynamics of atrial fibrillation (AF). We explored the relationship between left atrial (LA) wall thickness (LAWT) or LA geometry and AF wave-dynamics. METHODS: We included 15 patients with persistent AF (age, 62.3 ± 11.9 years) who underwent AF catheter ablation. We measured the LAWT, LA endocardial curvature, and SD-curvature (surface bumpiness) from preprocedural computed tomography images. We compared those anatomical characteristics with electrophysiologic parameters such as dominant frequency (DF), Shannon entropy (ShEn), or complex fractionated atrial electrogram (CFAE)-cycle length (CL), calculated from intracardiac bipolar electrograms (300-500 points, 5 s), acquired during ablation procedures. RESULTS: 1. LAWT (excluding fat) varied widely among patients, locations, and types of AF. LAWT was inversely correlated with LA volume (r = -0.565, p = 0.028) and positively correlated with SD-curvature (r = 0.272, p < 0.001). 2. LAWT was positively correlated with ShEn (r = 0.233, p < 0.001) and negatively correlated with CFAE-CL (r = -0.107, p = 0.038). 3. In the multivariate linear regression analyses for AF wave-dynamics parameters, DF (ß = -0.29 [95% CI -0.44--0.14], p < 0.001), ShEn (ß = 0.19 [95% CI 0.12-0.25], p < 0.001), and CFAE-CL (ß = 7.49 [95% CI 0.65-14.34], p = 0.032) were independently associated with LAWT. CONCLUSION: Regional LAWT is associated with LA structural features, and has significant correlations with the wave-dynamics parameters associated with electrical wavebreaks or rotors in patients with persistent AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Átrios do Coração/fisiopatologia , Idoso , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...