Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 26(6): 501, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920436

RESUMO

Sakurasosaponin (S-saponin; PubChem ID: 3085160), a recently identified saponin from the roots of Primula sieboldii, has shown potential anticancer properties against various types of cancer. In the present study, the effects of S-saponin on non-small cell lung cancer (NSCLC) cell proliferation and the underlying mechanisms, were investigated. The effect of S-saponin on cell proliferation and cell death were assessed CCK-8, clonogenic assay, western blotting and Annexin V/PI double staining. S-saponin-induced autophagy was determined by confocal microscopic analysis and immunoblotting. S-saponin inhibited the proliferation of A549 and H1299 NSCLC cell lines in a dose- and time-dependent manner, without inducing apoptosis. S-saponin treatment induced autophagy in these cells, as evidenced by the increased LC3-II levels and GFP-LC3 puncta formation. It activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which is crucial for autophagy induction. Inhibition of AMPK with Compound C or siRNA-mediated knockdown of AMPK abrogated S-saponin-induced autophagy and partially rescued cell proliferation. Therefore, S-saponin exerts anti-proliferative effects on NSCLC cells through autophagy induction via AMPK activation. Understanding the molecular mechanisms underlying the anticancer effects of S-saponin in NSCLC cells could provide insights for the development of novel therapeutic strategies for NSCLC.

2.
Oncol Lett ; 24(2): 290, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928802

RESUMO

The transcription factor or tumor suppressor protein p53 regulates numerous cellular functions, including cell proliferation, invasion, migration, senescence and apoptosis, in various types of cancer. HS-1793 is an analog of resveratrol, which exhibits anti-cancer effects on various types of cancer, including breast, prostate, colon and renal cancer, and multiple myeloma. However, to the best of our knowledge, the role of HS-1793 in lung cancer remains to be examined. The present study aimed to investigate the anti-cancer effect of HS-1793 on lung cancer and to determine its association with p53. The results revealed that HS-1793 reduced cell proliferation in lung cancer and increased p53 stability, thereby elevating the expression levels of the target genes p21 and mouse double minute 2 homolog (MDM2). When the levels of MDM2, a negative regulator of p53, are increased under normal conditions, MDM2 binds and degrades p53; however, HS-1793 inhibited this binding, confirming that p53 protein stability was increased. In conclusion, the findings of the present study provide new evidence that HS-1793 may inhibit lung cancer proliferation by disrupting the p53-MDM2 interaction.

3.
Biochem Biophys Res Commun ; 623: 96-103, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878429

RESUMO

The transcription factor FOXG1 plays an important role in inner ear development; however, the cis-regulatory mechanisms controlling the inner-ear-specific expression of FOXG1 are poorly understood. In this study, we aimed to identify the element that specifically regulates FoxG1 expression in the otic vesicle, which develops into the inner ear, through comparative genome analysis between vertebrate species and chromatin immunoprecipitation. The cis-regulatory element (E2) identified showed high evolutionary conservation among vertebrates in the genomic DNA of FoxG1 spanning approximately 3 Mbp. We identified core sequences important for the activity of the otic-vesicle-specific enhancer through in vitro and in vivo reporter assays for various E2 enhancer mutants and determined the consensus sequence for SOX DNA binding. In addition, SoxE, a subfamily of the Sox family, was simultaneously expressed in the otic vesicles of developing embryos and showed a similar protein expression pattern as that of FoxG1. Furthermore, SOXE transcription factors induced specific transcriptional activity through the FoxG1 Otic enhancer (E2b). These findings suggest that the interaction between the otic enhancer of FoxG1 and SOXE transcription factor, in which the otic expression of FoxG1 is evolutionarily well-conserved, is important during early development of the inner ear, a sensory organ important for survival in nature.


Assuntos
Orelha Interna , Fatores de Transcrição SOXE , Animais , DNA/metabolismo , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...