Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(32): 325602, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29786617

RESUMO

In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

2.
RSC Adv ; 8(20): 11102-11108, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541555

RESUMO

We fabricated a boron-doped diamond nanowire (BDDNW) array electrode via soft lithography and metal-assisted chemical etching (MACE) of Si to provide a highly promoted effective surface area and increased mass transport during the electrochemical oxidation process. The effects of aligning the BDDNW on the electrochemical oxidation performance and the current efficiency of the electrode in phenol oxidation were examined. Although the effective surface area of the BDDNW array with an aligned nanowire configuration was smaller than that of the BDDNW with a random nanowire configuration, the BDDNW array electrode exhibited a higher mass transfer coefficient, resulting in a better performance in the removal of phenol. The enhanced mass transport exhibited by the BDDNW array electrode also greatly enhanced the chemical oxygen demand (COD) and current efficiency. Furthermore, because of its excellent oxidation performance, the BDDNW array electrode also exhibited much lower energy consumption during the phenol oxidation process.

3.
Small ; 11(16): 1905-11, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25580907

RESUMO

Ag nanowire (NW) mesh is used as transparent conducting electrode for high efficient flexible organic solar cells (OSCs). The Ag NW mesh electrode facilitates light scattering and trapping, allowing enhancement of light absorption in the active layer. OSCs incorporating Ag NW mesh electrode exhibit maximum power conversion efficiency (PCE) of 4.47%, 25%, higher than that of OSCs with a conventional ITO electrode (3.63%).

4.
Sci Rep ; 4: 7334, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25476980

RESUMO

Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

5.
J Nanosci Nanotechnol ; 14(11): 8659-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958580

RESUMO

The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

6.
J Nanosci Nanotechnol ; 13(9): 6353-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205660

RESUMO

This study describes the effect of surfactant concentration on the chemical mechanical polishing process of Ge1Sb6Te3 film using nanodiamond-based slurry. Aggregated diamond nanoparticles were dispersed in a slurry solution containing anionic poly(sodium 4-styrene sulfonate) using milling system. The zeta-potential, particle size and transmission electron microscopy image of the dispersed nanodiamond particles were analyzed for slurries having varying surfactant concentrations to identify the effect of the surfactant concentration on the milling process. The cationic nanodiamond particles were covered with the anionic poly(sodium 4-styrene sulfonate) polymer, and the polymer acted as a dispersion agent on account of the electrostatic repulsion. By increasing the surfactant concentration in the milling process, the average particle size of the nanodiamond particle decreased until the concentration reached 0.9 wt%. In addition, the surface roughness and material removal rate of the Ge1Sb6Te3 film in the polishing process strongly-depended on the surfactant concentration. Both surface roughness and material removal rate decreased with an increase in the surfactant concentration. Excess poly(sodium 4-styrene sulfonate) acted as a passivation layer, resulting in a decrease in the surface roughness and material removal rate of the Ge1Sb6Te3 film.

7.
Nanotechnology ; 24(36): 365603, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23942313

RESUMO

Multilayer graphene is synthesized by a simplified process employing an evaporator in which a target substrate is deposited with a Ni catalyst layer before being heated to grow graphene directly. Carbon atoms adsorbed onto the surface of the Ni source as impurities from the atmosphere are incorporated into the catalyst layer during the deposition, and diffuse toward the catalyst/substrate interface, where they crystallize as graphene with a thickness of less than 2 nm. The need for a transfer process and external carbon supply is eliminated. The graphene is characterized by conventional analysis approaches, including nano-scale visualization and Raman spectroscopy, and utilizing photonics, graphene-functionalized passive laser mode-locking is demonstrated to confirm the successful synthesis of the graphene layer, resulting in an operating center wavelength of 1569.4 nm, a pulse duration of 1.35 ps, and a repetition rate of 31.6 MHz.

8.
ACS Appl Mater Interfaces ; 5(10): 4113-9, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23586602

RESUMO

Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 µΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 µm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 µΩ·cm at an energy level of 40.6 J cm(-2).

9.
Appl Biochem Biotechnol ; 170(2): 248-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23504564

RESUMO

In this study, we investigated the impact of nitrate dose on toluene degradation by Pseudomonas putida to elucidate the upper limit of nitrate concentration and whether an optimum ratio of nitrate to toluene concentration exists. Batch microcosm studies were conducted in order to monitor toluene degradation for various ratios (2-20) of nitrate to toluene with nitrate concentrations ranging from 0 to 700 mg L(-1) for a given toluene concentration of 50 and 25 mg L(-1) during 4-day (short term) and 14-day (long term) incubation time, respectively. The short-term study revealed that nitrate concentration of 500 mg L(-1) was toxic to bacteria and the optimum concentration was 300 mg L(-1) yielding the highest toluene degradation rate (0.083 mg L(-1) h(-1)). In the batch study of long term, toluene degradation was limited to 6 days after which the nitrate at 50 mg L(-1) was depleted, indicating that nitrate was a necessary electron acceptor. For both batch studies, an optimum ratio of 6 was found yielding the highest toluene degradation rate. This indicates that an appropriate nitrate dose is essential for efficient degradation of toluene when bioremediation of groundwater contaminated with toluene is under consideration.


Assuntos
Desnitrificação , Nitratos/metabolismo , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Anaerobiose , Biodegradação Ambiental , Transporte de Elétrons , Nitritos/metabolismo , Especificidade da Espécie , Fatores de Tempo
10.
Nano Lett ; 12(9): 4472-6, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22888862

RESUMO

Thermopower (S) profiling with nanometer resolution is essential for enhancing the thermoelectric figure of merit, ZT, through the nanostructuring of materials and for carrier density profiling in nanoelectronic devices. However, only qualitative and impractical methods or techniques with low resolutions have been reported thus far. Herein, we develop a quantitative S profiling method with nanometer resolution, scanning Seebeck microscopy (SSM), and batch-fabricate diamond thermocouple probes to apply SSM to silicon, which requires a contact stress higher than 10 GPa for stable electrical contact. The distance between the positive and negative peaks of the S profile across the silicon p-n junction measured by SSM is 4 nm, while the theoretical distance is 2 nm. Because of its extremely high spatial resolution, quantitative measurement, and ease of use, SSM could be a crucial tool not only for the characterization of nano-thermoelectric materials and nanoelectronic devices but also for the analysis of nanoscale thermal and electrical phenomena in general.


Assuntos
Eletrodos , Teste de Materiais/métodos , Semicondutores , Termografia/métodos , Temperatura
11.
Anal Sci ; 28(6): 583-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22729044

RESUMO

A selective dopamine (DA) sensor was developed using gold nanoparticles (Au-NPs) dispersed overoxidized-polyaniline (PANI(ox)) based on a boron-doped diamond (BDD) thin-film electrode. The concentration of the DA was determined using voltammetry as a non-enzymatic sensor. BDD thin film has a high signal-to-noise ratio, a long-term stability, a high sensitivity, and a good reproducibility. PANI nanocomposites were directly synthesized on the BDD electrode and overoxidized using 0.5 M H(2)SO(4) solution. The overoxidized PANI film enhances selectivity and sensitivity toward DA. The Au-NPs were dispersed on the PANI nanocomposite by electrochemical deposition. The nanometer-sized Au-NPs favor the sensing of DA in the presence of ascorbic acid (AA). The combination of the PANI with the Au-NPs and the BDD electrode can create synergetic effects for the performance of the biosensor, such as a fast response time, a lower detection limit, a wider linear range, enhanced selectivity, and higher sensitivity for the determination of DA.


Assuntos
Compostos de Anilina/química , Ácido Ascórbico/química , Boro/química , Dopamina/análise , Ouro/química , Nanocompostos/química , Técnicas Eletroquímicas , Eletrodos , Membranas Artificiais
12.
Anal Sci ; 27(10): 985-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21985922

RESUMO

An electrochemical biosensor was developed using boron-doped diamond (BDD) as an electrode material. To enhance the electrical performance of the electrode, the BDD electrode was decorated with Pt-nanoparticles (Pt-NPs) by electrochemical deposition. Their morphology according to the applied potentials for the synthesis of Pt-NPs was characterized by SEM. To identify the performance of the electrode modified with Pt-NPs, glucose detection was used as a sample sensing process, and the results were compared with those of a gold electrode and a bare BDD electrode. The electrochemical characteristics of the modified electrode were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The BDD electrode with the Pt-NPs showed higher sensitivity and a lower detection limit than the Au electrode and BDD electrode. The proposed biosensor based on the Pt-NPs decorated BDD electrode showed high sensitivity, a low detection limit, fast direct electron transfer and good stability.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , Platina/química , Técnicas Eletroquímicas , Eletroquímica , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
13.
Nanotechnology ; 21(50): 505302, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21098933

RESUMO

Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 × 10(11) cm(-2)) and smooth surface were consequently fabricated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...