Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 20(11): 7051-7056, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604556

RESUMO

Transition metal oxide materials with high theoretical capacities have been studied as substitutes for commercial graphite in lithiumion batteries. Among these, SnO2 is a promising alloying reaction-based anode material. However, the problem of rapid capacity fading in SnO2 due to volume variation during the alloying/dealloying processes must be solved. The lithiation of SnO2 results in the formation of a Li2O matrix. Herein, the volume variation of SnO2 was suppressed by controlling the voltage window to 1 V to prevent the delithiation reaction between Li2O and Sn. Using this strategy the unreacted Li2O matrix was enriched with metallic Sn particles, thereby providing a pathway for lithium ions. The specific capacity decay in the voltage window of 0.05-3 V was 1.8% per cycle. However, the specific capacity decay was improved to 0.04% per cycle after the voltage window was restricted (in the range of 0.05-1 V). This strategy resulted in a specific capacity of 374.7 mAh g-1 at 0.1 C after 40 cycles for the SnO2 anode.

2.
J Nanosci Nanotechnol ; 20(11): 7057-7064, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604557

RESUMO

In this paper, the relationship between the pore spatial structures, pore sizes, and pore types of highly ordered mesoporous CMK-based carbons (CMK-1, CMK-3, and CMK-5) and their electrochemical performance in Li-S batteries is investigated. CMK-1 has a complex spatial structure and small pores. The structure is good for limiting polysulfide in the pores, but not for rapid transfer of Li+ ions in the cell. CMK-3 and CMK-5 have similar spatial structures and pore sizes, but different pore types. Compared to the single pore structure of CMK-3, the bimodal pore structure of CMK-5 not only improves the electrolyte accessibility, but also increases the number of reaction sites, resulting in better electrochemical performance. Studying the correlation between the physical structure of carbon-based materials and their electrochemical performance in Li-S batteries will provide new insights for optimizing porous electrode materials.

3.
ChemSusChem ; 11(20): 3625-3630, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30113135

RESUMO

FeS2 /C core-shell nanofiber webs were synthesized for the first time by a unique synthesis strategy that couples electrospinning and carbon coating of the nanofibers with sucrose. The design of the one-dimensional core-shell morphology was found to be greatly beneficial for accommodating the volume changes encountered during cycling, to induce shorter lithium ion diffusion pathways in the electrode, and to prevent sulfur dissolution during cycling. A high discharge capacity of 545 mAh g-1 was retained after 500 cycles at 1 C, exhibiting excellent stable cycling performance with 98.8 % capacity retention at the last cycle. High specific capacities of 854 mAh g-1 , 518 mAh g-1 , and 208 mAh g-1 were obtained at 0.1 C, 1 C, and 10 C rates, respectively, demonstrating the exceptional rate capability of this nanofiber web cathode.

4.
ACS Appl Mater Interfaces ; 10(40): 34140-34146, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30152688

RESUMO

We have designed a self-standing anode built-up from highly conductive 3D-sponged nanofibers, that is, with no current collectors, binders, or additional conductive agents. The small diameter of the fibers combined with an internal spongelike porosity results in short distances for lithium-ion diffusion and 3D pathways that facilitate the electronic conduction. Moreover, functional groups at the fiber surfaces lead to the formation of a stable solid-electrolyte interphase. We demonstrate that this anode enables the operation of Li-cells at specific currents as high as 20 A g-1 (approx. 50C) with excellent cycling stability and an energy density which is >50% higher than what is obtained with a commercial graphite anode.

5.
J Nanosci Nanotechnol ; 18(9): 6499-6505, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677821

RESUMO

A novel tailor-made multilayer composite polymer electrolyte, consisting of two outer layers of electrospun polyacrylonitrile (PAN) and one inner layer of poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) fibrous membrane, was prepared using continuous electrospinning. These membranes, which are made up of fibers with diameters in the nanometer range, were stacked in layers to produce interconnected pores that result in a high porosity. Gel polymer electrolytes (GPEs) were prepared by entrapping a liquid electrolyte (1 M LiPF6 in ethylene carbonate/dimethyl carbonate) in the membranes. The composite membranes exhibited a high electrolyte uptake of 450-510%, coupled with an improved room temperature ionic conductivity of up to 4.72 mS cm-1 and a high electrochemical stability of 4.6 V versus Li/Li+. Electrochemical investigations of a composite membrane of PAN-PVAc-PAN, with a LiFePO4 cathode synthesized in-house, showed a high initial discharge capacity of 145 mAh g-1, which corresponds to 85% utilization of the active material, and displayed stable cycle performance.

6.
Sci Rep ; 7(1): 6327, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740246

RESUMO

We report on a new strategy to improve the capacity, reduce the manufacturing costs and increase the sustainability of Lithium-Sulfur (LiS) batteries. It is based on a semi-liquid cathode composed of a Li2S8 polysulphide catholyte and a binder-free carbon nanofiber membrane with tailored morphology. The polysulphides in the catholyte have the dual role of active material and providing Li+-conduction, i.e. no traditional Li-salt is used in this cell. The cell is able to deliver an areal capacity as high as 7 mAh cm-2, twice than that of commercial Lithium-ion batteries (LiBs) and 2-4 times higher than that of state-of-the-art LiS cells. In addition, the battery concept has an improved sustainability from a material point of view by being mainly based on sulfur and carbon and being completely fluorine-free, no fluorinated salt or binders are used, and has potential for upscaling and competitive price. The combination of these properties makes the semi-liquid LiS cell here reported a very promising new concept for practical large-scale energy storage applications.

7.
ChemSusChem ; 10(17): 3490-3496, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731629

RESUMO

Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium-sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g-1 ) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur-carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.


Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Polímeros/química , Enxofre/química , Condutividade Elétrica , Eletrodos , Géis
8.
Phys Chem Chem Phys ; 15(24): 9508-12, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23695009

RESUMO

FAD-dependent glucose dehydrogenase (FAD-GDH) of Burkholderia cepacia was successfully expressed in Escherichia coli and subsequently purified in order to use it as an anode catalyst for enzyme fuel cells. The purified enzyme has a low Km value (high affinity) towards glucose, which is 463.8 µM, up to 2-fold exponential range lower compared to glucose oxidase. The heterogeneous electron transfer coefficient (Ks) of FAD-GDH-menadione on a glassy carbon electrode was 10.73 s(-1), which is 3-fold higher than that of GOX-menadione, 3.68 s(-1). FAD-GDH was able to maintain its native glucose affinity during immobilization in the carbon nanotube and operation of enzyme fuel cells. FAD-GDH-menadione showed 3-fold higher power density, 799.4 ± 51.44 µW cm(-2), than the GOX-menadione system, 308.03 ± 17.93 µW cm(-2), under low glucose concentration, 5 mM, which is the concentration in normal physiological fluid.


Assuntos
Burkholderia cepacia/enzimologia , Glucose 1-Desidrogenase/metabolismo , Nanotubos de Carbono/química , Domínio Catalítico , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/metabolismo , Glucose/metabolismo , Glucose 1-Desidrogenase/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...