Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764622

RESUMO

Boron nitride nanotubes (BNNTs) were purified without the use of a dispersant by controlling the surface tension and steric repulsion of solvent molecules. This method effectively enhanced the difference in solubilities of impurities and BNNTs. The purification process involved optimizing the alkyl-chains of alcohol solvents and adjusting the concentration of alcohol solvent in water to regulate surface tension and steric repulsion. Among the solvents tested, a 70 wt% t-butylalcohol in water mixture exhibited the highest selective isolation of BNNTs from impurities based on differences in solubilities. This favorable outcome was attributed to the surface tension matching with BNNTs, steric repulsion from bulky alkyl chain structures, and differences in interfacial energy between BNNT-liquid and impurity-liquid interfaces. Through this optimized purification process, impurities were removed to an extent of up to 93.3%. Additionally, the purified BNNTs exhibited a distinct liquid crystal phase, which was not observed in the unpurified BNNTs.

2.
ACS Appl Mater Interfaces ; 15(20): 24681-24692, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163756

RESUMO

Microfiber fabrication via wet-spinning of lyotropic liquid crystals (LCs) with anisotropic nanomaterials has gained increased attention due to the microfibers' excellent physical/chemical properties originating from the unidirectional alignment of anisotropic nanomaterials along the fiber axis with high packing density. For wet-spinning of the microfibers, however, preparing lyotropic LCs by achieving high colloidal stability of anisotropic nanomaterials, even at high concentrations, has been a critically unmet prerequisite, especially for recently emerging nanomaterials. Here, we propose a cationically charged polymeric stabilizer that can efficiently be adsorbed on the surface of boron nitride nanotubes (BNNTs), which provide steric hindrance in combination with Coulombic repulsion leading to high colloidal stability of BNNTs up to 22 wt %. The BNNT LCs prepared from the dispersions with various stabilizers were systematically compared using optical and rheological analysis to optimize the phase behavior and rheological properties for wet-spinning of the BNNT LCs. Systematic optical and mechanical characterizations of the BNNT microfibers with aligned BNNTs along the fiber axis revealed that properties of the microfibers, such as their tensile strength, packing density, and degree of BNNT alignment, were highly dependent on the quality of BNNT LCs directly related to the types of stabilizers.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009960

RESUMO

To prevent global warming, ESS development is in progress along with the development of electric vehicles and renewable energy. However, the state-of-the-art technology, i.e., lithium-ion batteries, has reached its limitation, and thus the need for high-performance batteries with improved energy and power density is increasing. Lithium-sulfur batteries (LSBs) are attracting enormous attention because of their high theoretical energy density. However, there are technical barriers to its commercialization such as the formation of dendrites on the anode and the shuttle effect of the cathode. To resolve these issues, a boron nitride nanotube (BNNT)-based separator is developed. The BNNT is physically purified so that the purified BNNT (p-BNNT) has a homogeneous pore structure because of random stacking and partial charge on the surface due to the difference of electronegativity between B and N. Compared to the conventional polypropylene (PP) separator, the p-BNNT loaded PP separator prevents the dendrite formation on the Li metal anode, facilitates the ion transfer through the separator, and alleviates the shuttle effect at the cathode. With these effects, the p-BNNT loaded PP separators enable the LSB cells to achieve a specific capacity of 1429 mAh/g, and long-term stability over 200 cycles.

4.
Langmuir ; 36(20): 5563-5570, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32345023

RESUMO

Boron nitride (BN) nanofiller-based polymer composites have been considered promising candidates for efficient heat-dissipating packaging materials because of their superior thermal conductivity, mechanical strength, and chemical resistance. However, strong aggregation of the BN nanofillers in the composite matrix as well as the difficulty in the modification of the chemically inert surface prevents their effective use in polymer composites. Herein, we report an effective method by using in situ stabilizers to achieve homogeneous dispersion of boron nitride (BN) nanofillers in an epoxy-based polymeric matrix and demonstrate their use as efficient heat-dissipating materials. Poly(4-vinylpyridine) (P4VP) is designed and added into the epoxy resin to produce in situ stabilizers during preparation of hexagonal BNs (h-BNs) and BN nanotubes (BNNTs) dispersion. In-depth experimental and theoretical studies indicated that the homogeneous distribution of BN nanofillers in epoxy composites achieved by using the in situ stabilizer enhanced the thermal conductivity of the composite by ∼27% at the same concentration of the BN nanofillers. In addition, the thermal conductivity of the h-BN/epoxy composite (∼3.3 W/mK) was dramatically improved by ∼48% (4.9 W/mK) when the homogeneously dispersed BNNTs (∼1.8 vol %) were added. The concept of the proposed in situ stabilizer can be further utilized to prepare the epoxy composites with the homogeneous distribution of BN nanofillers, which is critical for reproducible and position-independent composite properties.

5.
ACS Macro Lett ; 7(10): 1180-1185, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651269

RESUMO

A powerful strategy to enhance the thermal conductivity of liquid crystalline epoxy resin (LCER) by simply replacing the conventional amine cross-linker with a cationic initiator was developed. The cationic initiator linearly wove the epoxy groups tethered on the microscopically aligned liquid crystal mesogens, resulting in freezing of the ordered LC microstructures even after curing. Owing to the reduced phonon scattering during heat transport through the ordered LC structure, a dramatic improvement in the thermal conductivity of neat cation-cured LCER was achieved to give a value ∼141% (i.e., 0.48 W/mK) higher than that of the amorphous amine-cured LCER. In addition, at the same composite volume fraction in the presence of a 2-D boron nitride filler, an approximately 130% higher thermal conductivity (maximum ∼23 W/mK at 60 vol %) was observed. The nanoarchitecture effect of the ordered LCER on the thermal conductivity was then examined by a systematic investigation using differential scanning calorimetry, polarized optical microscopy, X-ray diffraction, and thermal conductivity measurements. The linear polymerization of LCER can therefore be considered a practical strategy to enable the cost-efficient mass production of heat-dissipating materials, due to its high efficiency and simple process without the requirement for complex equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...