Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12048, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802364

RESUMO

Landslides pose a growing concern worldwide, emphasizing the need for accurate prediction and assessment to mitigate their impact. Recent advancements in remote sensing technology offer unprecedented datasets at various scales, yet practical applications demand further case studies to fully integrate these technologies into landslide analysis. This study presents a case study approach to fully leverage variety of multi-source remote sensing technologies for analyzing the characteristics of a landslide. The selected case is a landslide with a long runout debris flow that occurred in Gokseong County, South Korea, on August 7, 2020. The chosen multi-source technologies encompass digital photogrammetry using RGB and multi-spectral imageries, 3D point clouds acquired by light detection and ranging (LiDAR) mounted on an unmanned aerial vehicle (UAV), and satellite interferometric synthetic aperture radar (InSAR). The satellite InSAR analysis identifies the initial displacement, triggered by rainfall and later transforming into a debris flow. The utilization of digital photogrammetry, employing UAV-RGB and multi-spectral image data, precisely delineates the extent affected by the landslide. The landslide encompassed a runout distance of 678 m, featuring an initiation zone characterized by an average slope of 35°. Notably, the eroded and deposited areas measured 2.55 × 104 m2 and 1.72 × 104 m2, respectively. The acquired UAV-LiDAR data further reveal the eroded and deposited landslide volumes approximately measuring 5.60 × 104 m3 and 1.58 × 104 m3, respectively. This study contributes a valuable dataset on a rainfall-induced landslide with a long runout debris flow, underscoring the effectiveness of multi-source remote sensing technology in monitoring and comprehending complex landslide events.

2.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183206

RESUMO

Soil water content is one of the most important physical indicators of landslide hazards. Therefore, quickly and non-destructively classifying soils and determining or predicting water content are essential tasks for the detection of landslide hazards. We investigated hyperspectral information in the visible and near-infrared regions (400-1000 nm) of 162 granite soil samples collected from Seoul (Republic of Korea). First, effective wavelengths were extracted from pre-processed spectral data using the successive projection algorithm to develop a classification model. A gray-level co-occurrence matrix was employed to extract textural variables, and a support vector machine was used to establish calibration models and the prediction model. The results show that an optimal correct classification rate of 89.8% could be achieved by combining data sets of effective wavelengths and texture features for modeling. Using the developed classification model, an artificial neural network (ANN) model for the prediction of soil water content was constructed. The input parameter was composed of Munsell soil color, area of reflectance (near-infrared), and dry unit weight. The accuracy in water content prediction of the developed ANN model was verified by a coefficient of determination and mean absolute percentage error of 0.91 and 10.1%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...