Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 421(2): 203-7, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22503687

RESUMO

Lipid metabolism drastically changes in response to the environmental factors in metazoans. Lipid is accumulated at the food rich condition, while mobilized in adipocyte tissue in starvation. Such lipid mobilization is also evident during the pupation of the insects. Pupation is induced by metamorphosis hormone, ecdysone via ecdysone receptor (EcR) with lipid mobilization, however, the molecular link of the EcR-mediated signal to the lipid mobilization remains elusive. To address this issue, EcR was genetically knocked-down selectively in 3rd instar larva fat body of Drosophila, corresponding to the adipocyte tissues in mammalians, that contains adipocyte-like cells. In this mutant, lipid accumulation was increased in the fat body. Lipid accumulation was also increased when knocked-down of taiman, which served as the EcR co-activator. Two lipid metabolism regulatory factor, E75B and adipose (adp) as well as cell growth factor, dMyc, were found as EcR target genes in the adipocyte-like cells, and consistently knock-down of these EcR target genes brought phenotypes in lipid accumulation supporting EcR function. These findings suggest that EcR-mediated ecdysone signal is significant in lipid metabolism in insects.


Assuntos
Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Receptores de Esteroides/metabolismo , Animais , Drosophila melanogaster/genética , Receptores de Esteroides/agonistas , Transcrição Gênica
2.
Mol Cell ; 45(4): 494-504, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22365829

RESUMO

Cell cycle-dependent expression of canonical histone proteins enables newly synthesized DNA to be integrated into chromatin in replicating cells. However, the molecular basis of cell cycle-dependency in the switching of histone gene regulation remains to be uncovered. Here, we report the identification and biochemical characterization of a molecular switcher, HERS (histone gene-specific epigenetic repressor in late S phase), for nucleosomal core histone gene inactivation in Drosophila. HERS protein is phosphorylated by a cyclin-dependent kinase (Cdk) at the end of S-phase. Phosphorylated HERS binds to histone gene regulatory regions and anchors HP1 and Su(var)3-9 to induce chromatin inactivation through histone H3 lysine 9 methylation. These findings illustrate a salient molecular switch linking epigenetic gene silencing to cell cycle-dependent histone production.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Histonas/genética , Proteínas Repressoras/fisiologia , Animais , Ciclo Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fase S
3.
Genes Dev ; 24(2): 159-70, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20040570

RESUMO

Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies. Biochemical purification and characterization of the complexes containing fly and human DEKs revealed that DEKs serve as histone chaperones via phosphorylation by forming complexes with casein kinase 2. Consistent with the preferential association of the DEK complex with histones enriched in active epigenetic marks, dDEK facilitated H3.3 assembly during puff formation. In some human myeloid leukemia patients, DEK was fused to CAN by chromosomal translocation. This mutation significantly reduced formation of the DEK complex, which is required for histone chaperone activity. Thus, the present study suggests that at least one histone chaperone can be categorized as a type of transcriptional coactivator for nuclear receptors.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Oncogênicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores da Família Eph/metabolismo , Ativação Transcricional/genética , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Sequência Conservada , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Evolução Molecular , Chaperonas de Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Nucleossomos/metabolismo , Proteínas Oncogênicas/genética , Proteínas de Ligação a Poli-ADP-Ribose , Receptores da Família Eph/genética
4.
Proc Natl Acad Sci U S A ; 106(10): 3818-22, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19237573

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição E2F/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Animais , Proteínas de Drosophila/genética , Fatores de Transcrição E2F/genética , Humanos , Ligantes , Proteínas Mutantes/metabolismo , Degeneração Neural/metabolismo , Ligação Proteica , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...