Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103138

RESUMO

The modes through which individuals disperse prior to reproduction has important consequences for gene flow in populations. In honey bees (Apis sp.), drones (males) reproduce within a short flight range of their natal nest, leaving and returning each afternoon within a narrow mating window. Drones are assumed to return to their natal nests as they depend on workers to feed them. However, in apiaries, drones are reported to regularly make navigation errors and return to a non-natal nest, where they are accepted and fed by unrelated workers. If such a "drone drift" occurred in wild populations, it could facilitate some further degree of dispersal for males, particularly if drones drift into host nests some distance away from their natal nest. Here, we investigated whether drone drift occurs in an invasive population of the Asian honey bee (Apis cerana). Based on the genotypes of 1462 drones from 19 colonies, we found only a single drone that could be considered a candidate drifter (~0.07%). In three other colonies, drones whose genotypes differed from the inferred queen were best explained by recent queen turnover or worker-laying. We concluded that drone drift in this population is low at best, and A. cerana drones either rarely make navigation errors in wild populations or are not accepted into foreign nests when they do so. We therefore confirm that drone dispersal distance is limited to the distance of daily drone flights from natal nests, a key assumption of both colony density estimates based on sampling of drone congregation areas and population genetic models of gene flow in honey bees.

2.
J Exp Biol ; 223(Pt 18)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32680901

RESUMO

In honeybees there are three alleles of cytosolic malate dehydrogenase gene: F, M and S. Allele frequencies are correlated with environmental temperature, suggesting that the alleles have temperature-dependent fitness benefits. We determined the enzyme activity of each allele across a range of temperatures in vitro The F and S alleles have higher activity and are less sensitive to high temperatures than the M allele, which loses activity after incubation at temperatures found in the thorax of foraging bees in hot climates. Next, we predicted the protein structure of each allele and used molecular dynamics simulations to investigate their molecular flexibility. The M allozyme is more flexible than the S and F allozymes at 50°C, suggesting a plausible explanation for its loss of activity at high temperatures, and has the greatest structural flexibility at 15°C, suggesting that it can retain some enzyme activity at cooler temperatures. MM bees recovered from 2 h of cold narcosis significantly better than all other genotypes. Combined, these results explain clinal variation in malate dehydrogenase allele frequencies in the honeybee at the molecular level.


Assuntos
Malato Desidrogenase , Alelos , Animais , Abelhas/genética , Frequência do Gene , Genótipo , Malato Desidrogenase/genética , Temperatura
3.
Curr Biol ; 30(12): 2248-2259.e6, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32386531

RESUMO

In honeybees, the ability of workers to produce daughters asexually, i.e., thelytokous parthenogenesis, is restricted to a single subspecies inhabiting the Cape region of South Africa, Apis mellifera capensis. Thelytoky has unleashed new selective pressures and the evolution of traits such as social parasitism, invasiveness, and social cancer. Thelytoky arises from an abnormal meiosis that results in the fusion of two maternal pronuclei, restoring diploidy in newly laid eggs. The genetic basis underlying thelytoky is disputed. To resolve this controversy, we generated a backcross between thelytokous A. m. capensis and non-thelytokous A. m. scutellata from the neighboring population and looked for evidence of genetic markers that co-segregated with thelytokous reproduction in 49 backcross females. We found that markers associated with the gene GB45239 on chromosome 11, including non-synonymous variants, showed consistent co-segregation with thelytoky, whereas no other region did so. Alleles associated with thelytoky were present in all A. m. capensis genomes examined but were absent from all other honeybees worldwide including A. m. scutellata. GB45239 is derived in A. m. capensis and has a putative role in chromosome segregation. It is expressed in ovaries and is downregulated in thelytokous bees, likely because of polymorphisms in the promoter region. Our study reveals how mutations affecting the sequence and/or expression of a single gene can change the reproductive mode of a population.


Assuntos
Abelhas/fisiologia , Partenogênese/genética , Animais , Abelhas/genética , Marcadores Genéticos , Hibridização Genética , Especificidade da Espécie
4.
J Econ Entomol ; 112(1): 33-39, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30285107

RESUMO

Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] queens are polyandrous, mating with an average 12 males (drones). Polyandry has been shown to confer benefits to queens and the colonies they head, including avoidance of inviable brood that can arise via sex locus homozygosity, increased resilience to pests and pathogens, and increased survival and productivity, leading to improved colony-level fitness. Queens with an effective mating frequency (ke) greater than 7 are considered adequately mated, whereas queens that fall below this threshold head colonies that have increased likelihood of failure and may be less productive for beekeepers. We determined ke in queens produced in early Spring and Autumn by five Australian commercial queen producers to determine whether the queens they produced were suitably mated. Drone populations are low at these times of year, and therefore, there is an increased risk that queens would fall below the ke > 7 threshold. We found that 33.8% of Autumn-produced queens did not meet the threshold, whereas 93.8% of Spring queens were adequately mated. The number of colonies contributing drones to the mating pool was similarly high in both seasons, suggesting that although many colonies have drones, their numbers may be decreased in Autumn and management strategies may be required to boost drone numbers at this time. Finally, queens had similar levels of homozygosity to workers, and inbreeding coefficients were very low, suggesting that inbreeding is not a problem.


Assuntos
Abelhas/genética , Variação Genética , Animais , Feminino , Endogamia , Masculino , Estações do Ano , Comportamento Sexual Animal
5.
Mol Biol Evol ; 33(1): 134-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26416979

RESUMO

Worker sterility is a defining characteristic of eusociality. The existence of the sterile worker caste remains a fundamental question for evolutionary biology as it requires the existence of genes that reduce personal reproduction. Currently, little is known about the proximate mechanisms underpinning worker sterility. Studies into a mutant "anarchistic" strain (in which workers can activate their ovaries) of honey bee, Apis mellifera, identified a list of candidate genes that regulate ovary activation. We quantified the expression of the four most promising candidate genes (Anarchy, Pdk1, S6k, and Ulk3) in nonactivated and activated ovaries of wild-type workers. Ovarian expression of Anarchy, a peroxisomal membrane protein, predicts the ovary state of workers with 88.2% accuracy. Increased expression of Anarchy in the ovary is strongly associated with suppression of oogenesis and its expression is sensitive to the presence of the queen. Therefore, Anarchy satisfies key criteria for a "gene underlying altruism". When we knocked down expression of Anarchy in the ovary using RNA interference (RNAi) we altered the expression of Buffy, a gene that regulates programmed cell death. Whole-mount multiplex fluorescent in situ hybridization (mFISH) shows Anarchy transcripts localize to degenerating oocytes within the ovary. Our results suggest that Anarchy is involved in the regulation of oogenesis through programmed cell death. The evolution of facultative worker sterility most likely occurred when the conserved mechanism of programmed cell death was co-opted to regulate ovary activation. Anarchy may therefore be the first example of a gene that has evolved through kin selection to regulate worker sterility.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Infertilidade/genética , Animais , Morte Celular/genética , Feminino , Oogênese/genética , Comportamento Social
6.
Mol Ecol Resour ; 15(6): 1346-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25846634

RESUMO

The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.


Assuntos
Abelhas/classificação , Abelhas/genética , Genótipo , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , África , América , Animais , Austrália , Europa (Continente) , Estados Unidos
7.
Development ; 141(13): 2702-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24924193

RESUMO

In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species.


Assuntos
Abelhas/fisiologia , Evolução Biológica , Metilação de DNA/fisiologia , Óvulo/metabolismo , Espermatozoides/metabolismo , Animais , Sequência de Bases , Ilhas de CpG/fisiologia , Feminino , Biblioteca Gênica , Hierarquia Social , Masculino , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Eur J Neurosci ; 39(10): 1642-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628891

RESUMO

Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system.


Assuntos
Antenas de Artrópodes/fisiologia , Abelhas/fisiologia , Proteínas de Insetos/metabolismo , Memória de Longo Prazo/fisiologia , Percepção Olfatória/fisiologia , Receptores Odorantes/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Condicionamento Psicológico/fisiologia , Imuno-Histoquímica , Plasticidade Neuronal/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Imagem Óptica , Estimulação Física , Reação em Cadeia da Polimerase em Tempo Real
9.
Insect Mol Biol ; 21(6): 558-67, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22984778

RESUMO

A queen honey bee mates at ∼6 days of age, storing the sperm in her spermatheca for life. Mating is associated with profound changes in the behaviour and physiology of the queen but the mechanisms underlying these changes are poorly understood. What is known is that the presence of semen in the oviducts and spermatheca is insufficient to initiate laying, and that copulation or CO(2) narcosis is necessary for ovary activation. In this study we use real-time quantitative PCR to investigate the expression of biogenic amine receptor genes in the brain and ovarian tissue of queens in relation to their reproductive status. We show that dopamine, octopamine and serotonin receptor genes are expressed in the ovaries of queens, and that natural mating, CO(2) narcosis, and the presence of semen in the spermatheca differentially affect their expression. We suggest that these changes may be central to the hormonal cascades that are necessary to initiate oogenesis.


Assuntos
Abelhas/metabolismo , Proteínas de Insetos/metabolismo , Receptores de Amina Biogênica/metabolismo , Comportamento Sexual Animal , Animais , Abelhas/genética , Encéfalo/metabolismo , Dióxido de Carbono , Feminino , Expressão Gênica , Proteínas de Insetos/genética , Masculino , Ovário/metabolismo , Receptores de Amina Biogênica/genética
10.
Evolution ; 66(6): 1897-906, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22671554

RESUMO

An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.


Assuntos
Abelhas/genética , Perda de Heterozigosidade , Animais , Repetições de Microssatélites/genética , Recombinação Genética
11.
J Hered ; 102(5): 562-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21775677

RESUMO

Unmated workers of the Cape honeybee Apis mellifera capensis can produce female offspring including daughter queens. As worker-laid queens are produced asexually, we wondered whether these asexually produced individuals reproduce asexually or sexually. We sampled 11 colonies headed by queens known to be the clonal offspring of workers and genotyped 23 worker offspring from each queen at 5 microsatellite loci. Without exception, asexually produced queens produced female worker offspring sexually. In addition, we report the replacement of a queen by her asexually produced granddaughter, with this asexually produced queen also producing offspring sexually. Hence, once a female larva is raised as a queen, mating and sexual reproduction appears to be obligatory in this subspecies, despite the fact that worker-laid queens are derived from asexual lineages.


Assuntos
Abelhas/genética , Alelos , Animais , Feminino , Loci Gênicos , Genética Populacional , Genótipo , Masculino , Repetições de Microssatélites/genética , Reprodução/genética , Reprodução Assexuada , Comportamento Sexual Animal
12.
Neurorehabil Neural Repair ; 25(2): 158-67, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20952633

RESUMO

BACKGROUND: Spinal cord injury (SCI) patients have respiratory complications because of abdominal muscle weakness and paralysis, which impair the ability to cough. OBJECTIVE: This study aims to enhance cough in high-level SCI subjects (n = 11, SCI at or above T6) using surface electrical stimulation of the abdominal muscles via 2 pairs of posterolaterally placed electrodes. METHODS: From total lung capacity, subjects performed maximum expiratory pressure (MEP) efforts against a closed airway and voluntary cough efforts. Both efforts were performed with and without superimposed trains of electrical stimulation (50 Hz, 1 second) at a submaximal intensity set to evoke a gastric pressure (P(ga)) of 40 cm H(2)O at functional residual capacity. RESULTS: In the MEP effort, stimulation increased the maximal P(ga) (from 21.4 ± 7.0 to 59.0 ± 5.7 cm H(2)O) and esophageal pressure (P(es); 47.2 ± 11.7 to 65.6 ± 13.6 cm H(2)O). During the cough efforts, stimulation increased P(ga) (19.5 ± 6.0 to 57.9 ± 7.0 cm H(2)O) and P(es) (31.2 ± 8.7 to 56.6 ± 10.5 cm H(2)O). The increased expiratory pressures during cough efforts with stimulation increased peak expiratory flow (PEF, by 36% ± 5%), mean expiratory flow (by 80% ± 8%), and expired lung volume (by 41% ± 16%). In every subject, superimposed electrical stimulation improved peak expiratory flow during cough efforts (by 0.99 ± 0.12 L/s; range, 0.41-1.80 L/s). Wearing an abdominal binder did not improve stimulated cough flows or pressures. CONCLUSIONS: The increases in P(ga) and PEF with electrical stimulation using the novel posterolateral electrode placement are 2 to 3 times greater than improvements reported in other studies. This suggests that posterolateral electrical stimulation of abdominal muscles is a simple noninvasive way to enhance cough in individuals with SCI.


Assuntos
Músculos Abdominais/fisiopatologia , Tosse/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Expiração/fisiologia , Paralisia Respiratória/reabilitação , Traumatismos da Medula Espinal/reabilitação , Estimulação Elétrica Nervosa Transcutânea/métodos , Músculos Abdominais/inervação , Adulto , Idoso , Tosse/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia Respiratória/etiologia , Paralisia Respiratória/fisiopatologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
13.
Evolution ; 65(3): 860-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21044063

RESUMO

The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites. The current infestation is 20-year old--surprising because an asexual lineage is expected to show a decline in vigor over time due to increasing homozygosity. The decline is expected to be acute in honey bees, where homozygosity at the sex locus is lethal. We surveyed colonies from the zone of infestation and genotyped putative parasites at two sets of linked microsatellite loci. We confirm that there is a single clonal lineage of parasites that shows minor variations arising from recombination events. The lineage shows high levels of heterozygosity, which may be maintained by selection against homozygotes, or by a reduction in recombination frequency within the lineage. We suggest that the clonal lineage can endure the costs of asexual reproduction because of the fitness benefits of its parasitic life history.


Assuntos
Abelhas/genética , Animais , Abelhas/fisiologia , Feminino , Heterozigoto , Endogamia , Masculino , Reprodução Assexuada , África do Sul
14.
Mol Ecol ; 19(13): 2792-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20546135

RESUMO

During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de-queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen-laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen-laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non-natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Animais , Feminino , Repetições de Microssatélites , Pupa/genética , Reprodução , Análise de Sequência de DNA , Comportamento Social
15.
Mol Ecol ; 18(12): 2722-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457187

RESUMO

Reproduction by workers is rare in honey bee colonies that have an active queen. By not producing their own offspring and preventing other workers from producing theirs, workers are thought to increase their inclusive fitness due to their higher average relatedness towards queen-produced male offspring compared with worker-produced male offspring. But there is one exception. Workers of the Cape honey bee, Apis mellifera capensis, are able to produce diploid female offspring via thelytokous parthenogenesis and thus produce clones of themselves. As a result, worker reproduction and tolerance towards worker-produced offspring is expected to be more permissive than in arrhenotokous (sub)species where worker offspring are male. Here we quantify the extent to which A. m. capensis workers contribute to reproduction in queenright colonies using microsatellite analyses of pre-emergent brood. We show that workers produced 10.5% of workers and 0.48% of drones. Most of the workers' contribution towards the production of new workers coincided with the colonies producing new queens during reproductive swarming.


Assuntos
Abelhas/genética , Comportamento Sexual Animal , Comportamento Social , Animais , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Reprodução/genética
16.
Genetics ; 180(1): 359-66, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716331

RESUMO

The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.


Assuntos
Abelhas/genética , Partenogênese/genética , Recombinação Genética , Animais , DNA/genética , Feminino , Ligação Genética , Heterozigoto , Masculino , Repetições de Microssatélites/genética , Modelos Genéticos , Análise de Sequência de DNA , Processos de Determinação Sexual , África do Sul
17.
J Econ Entomol ; 101(2): 272-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18459388

RESUMO

Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.


Assuntos
Abelhas/genética , Animais , Sequência de Bases , Abelhas/classificação , DNA Intergênico/genética , DNA Mitocondrial/química , Variação Genética , Haplótipos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Austrália Ocidental
18.
J Exp Zool A Ecol Genet Physiol ; 307(10): 600-10, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17786975

RESUMO

A fundamental issue in sociobiology is to understand how social insect females regulate their individual reproduction to maximize colony and personal fitness. Although the social cues mediating reproductive output within castes of the honey bees (Apis mellifera) are understood at a basic level, the underlying gene regulatory networks are not. In this study, we investigate the expression of 25 genes whose function suggests a role in the gene networks that regulate ovary activation--a functional determinant of reproductive skew. To this end, we used CO2 narcosis to manipulate ovary activation in queens and workers, and then quantified concomitant changes in gene expression using quantitative polymerase chain reaction. Of the 25 genes studied, ten were differentially expressed between treated and control groups in at least one caste. Two of these genes, a ribosomal protein and a tyramine receptor, were differentially expressed between treatments and controls in both castes. We use the expression pattern of all differentially expressed genes to test hypotheses for the caste-specific regulation of ovary activation in honey bees.


Assuntos
Abelhas/genética , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Genes de Insetos , Ovário/fisiologia , Reprodução/genética , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ovário/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Amina Biogênica/genética , Reprodução/efeitos dos fármacos , Proteínas Ribossômicas/genética
19.
J Appl Physiol (1985) ; 102(4): 1612-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17185493

RESUMO

Abdominal muscles are the most important expiratory muscles for coughing. Spinal cord-injured patients have respiratory complications because of abdominal muscle weakness and paralysis and impaired ability to cough. We aimed to determine the optimal positioning of stimulating electrodes on the trunk for the noninvasive electrical activation of the abdominal muscles. In six healthy subjects, we compared twitch pressures produced by a single electrical pulse through surface electrodes placed either posterolaterally or anteriorly on the trunk with twitch pressures produced by magnetic stimulation of nerve roots at the T(10) level. A gastroesophageal catheter measured gastric pressure (Pga) and esophageal pressure (Pes). Twitches were recorded at increasing stimulus intensities at functional residual capacity (FRC) in the seated posture. The maximal intensity used was also delivered at total lung capacity (TLC). At FRC, twitch pressures were greatest with electrical stimulation posterolaterally and magnetic stimulation at T(10) and smallest at the anterior site (Pga, 30 +/- 3 and 33 +/- 6 cm H(2)O vs. 12 +/- 3 cm H(2)O; Pes 8 +/- 2 and 11 +/- 3 cm H(2)O vs. 5 +/- 1 cm H(2)O; means +/- SE). At TLC, twitch pressures were larger. The values for posterolateral electrical stimulation were comparable to those evoked by thoracic magnetic stimulation. The posterolateral stimulation site is the optimal site for generating gastric and esophageal twitch pressures with electrical stimulation.


Assuntos
Músculos Abdominais/fisiologia , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Eletrodos , Esôfago/fisiologia , Manometria/métodos , Contração Muscular/fisiologia , Estômago/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão
20.
J Bacteriol ; 185(18): 5483-90, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949100

RESUMO

We report the first study of tRNA modification in psychrotolerant archaea, specifically in the archaeon Methanococcoides burtonii grown at 4 and 23 degrees C. For comparison, unfractionated tRNA from the archaeal hyperthermophile Stetteria hydrogenophila cultured at 93 degrees C was examined. Analysis of modified nucleosides using liquid chromatography-electrospray ionization mass spectrometry revealed striking differences in levels and identities of tRNA modifications between the two organisms. Although the modification levels in M. burtonii tRNA are the lowest in any organism of which we are aware, it contains more than one residue per tRNA molecule of dihydrouridine, a molecule associated with maintenance of polynucleotide flexibility at low temperatures. No differences in either identities or levels of modifications, including dihydrouridine, as a function of culture temperature were observed, in contrast to selected tRNA modifications previously reported for archaeal hyperthermophiles. By contrast, S. hydrogenophila tRNA was found to contain a remarkable structural diversity of 31 modified nucleosides, including nine methylated guanosines, with eight different nucleoside species methylated at O-2' of ribose, known to be an effective stabilizing motif in RNA. These results show that some aspects of tRNA modification in archaea are strongly associated with environmental temperature and support the thesis that posttranscriptional modification is a universal natural mechanism for control of RNA molecular structure that operates across a wide temperature range in archaea as well as bacteria.


Assuntos
Desulfurococcaceae/genética , Methanosarcinaceae/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA de Transferência/metabolismo , Temperatura , Uridina/análogos & derivados , Divisão Celular/fisiologia , Cromatografia Líquida/métodos , Desulfurococcaceae/crescimento & desenvolvimento , Guanosina/metabolismo , Espectrometria de Massas/métodos , Methanosarcinaceae/crescimento & desenvolvimento , Nucleosídeos/análise , Nucleosídeos/química , RNA de Transferência/química , RNA de Transferência/genética , Ribose/metabolismo , Especificidade da Espécie , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...