Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Blood Adv ; 7(19): 5727-5732, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37552129

RESUMO

Our current understanding of the kinetics and dynamics of erythroid differentiation is based almost entirely on the ex vivo expansion of cultured hematopoietic progenitor cells. In this study, we used an erythroid-specific, inducible transgenic mouse line to investigate for the first time, the in vivo erythroid differentiation kinetics under steady-state conditions. We demonstrated that bipotent premegakaroycyte/erythroid (PreMegE) progenitor cells differentiate into erythroid-committed proerythroblast/basophilic erythroblasts (ProBasoE) after 6.6 days under steady-state conditions. During this process, each differentiation phase (from PreMegE to precolony forming unit-erythroid [PreCFU-E], PreCFU-E to CFU-E, and CFU-E to ProBasoE) took ∼2 days in vivo. Upon challenge with 5-flurouracil (5-FU), which leads to the induction of stress erythropoiesis, erythroid maturation time was reduced from 6.6 to 4.7 days. Furthermore, anemia induced in 5-FU-treated mice was shown to be due not only to depleted bone marrow erythroid progenitor stores but also to a block in reticulocyte exit from the bone marrow into the circulation, which differed from the mechanism induced by acute blood loss.


Assuntos
Anemia , Camundongos , Animais , Células-Tronco Hematopoéticas , Medula Óssea , Diferenciação Celular , Fluoruracila
2.
Cell Discov ; 8(1): 41, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534476

RESUMO

Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.

3.
Blood Adv ; 6(11): 3280-3285, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35240686

RESUMO

Human γ-globin is predominantly expressed in fetal liver erythroid cells during gestation from 2 nearly identical genes, HBG1 and HBG2, that are both perinatally silenced. Reactivation of these fetal genes in adult red blood cells can ameliorate many symptoms associated with the inherited ß-globinopathies, sickle cell disease, and Cooley anemia. Although promising genetic strategies to reactivate the γ-globin genes to treat these diseases have been explored, there are significant barriers to their effective implementation worldwide; alternatively, pharmacological induction of γ-globin synthesis could readily reach the majority of affected individuals. In this study, we generated a CRISPR knockout library that targeted all erythroid genes for which prospective or actual therapeutic compounds already exist. By probing this library for genes that repress fetal hemoglobin (HbF), we identified several novel, potentially druggable, γ-globin repressors, including VHL and PTEN. We demonstrate that deletion of VHL induces HbF through activation of the HIF1α pathway and that deletion of PTEN induces HbF through AKT pathway stimulation. Finally, we show that small-molecule inhibitors of PTEN and EZH induce HbF in both healthy and ß-thalassemic human primary erythroid cells.


Assuntos
Talassemia beta , gama-Globinas , Adulto , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Estudos Prospectivos , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo
4.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383890

RESUMO

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Assuntos
Padronização Corporal , Face/embriologia , Fator de Transcrição GATA3/metabolismo , Animais , Região Branquial/citologia , Região Branquial/embriologia , Região Branquial/metabolismo , Morte Celular , Proliferação de Células , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Embrião de Mamíferos , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento , Mandíbula/citologia , Mandíbula/embriologia , Maxila/citologia , Maxila/embriologia , Camundongos , Morfogênese , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/metabolismo
5.
Blood ; 138(18): 1691-1704, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324630

RESUMO

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of ß-globinopathies (sickle cell disease and ß-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.


Assuntos
Células Eritroides/citologia , Eritropoese , Histona Desmetilases/metabolismo , Células Mieloides/citologia , Animais , Linhagem Celular , Células Cultivadas , Células Eritroides/metabolismo , Deleção de Genes , Histona Desmetilases/genética , Humanos , Camundongos , Células Mieloides/metabolismo
6.
Development ; 146(21)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31582413

RESUMO

Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.


Assuntos
Células Endoteliais/metabolismo , Fator de Transcrição GATA2/metabolismo , MicroRNAs/metabolismo , Mutação , Angiopoietina-2/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Claudina-5/metabolismo , Família de Proteínas EGF/metabolismo , Endotélio Vascular/metabolismo , Feminino , Deleção de Genes , Humanos , Vasos Linfáticos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq
7.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463901

RESUMO

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Assuntos
Regulação da Expressão Gênica/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , gama-Globinas/genética , Sítios de Ligação , Linhagem Celular , Ativação Enzimática/genética , Epigênese Genética/genética , Células Eritroides/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Células K562 , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Domínios Proteicos , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
8.
Mol Cell Biol ; 38(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126893

RESUMO

Transcription factor GATA3 plays vital roles in inner ear development, while regulatory mechanisms controlling its inner ear-specific expression are undefined. We demonstrate that a cis-regulatory element lying 571 kb 3' to the Gata3 gene directs inner ear-specific Gata3 expression, which we refer to as the Gata3 otic vesicle enhancer (OVE). In transgenic murine embryos, a 1.5-kb OVE-directed lacZ reporter (TgOVE-LacZ) exhibited robust lacZ expression specifically in the otic vesicle (OV), an inner ear primordial tissue, and its derivative semicircular canal. To further define the regulatory activity of this OVE, we generated Cre transgenic mice in which Cre expression was directed by a 246-bp core sequence within the OVE element (TgcoreOVE-Cre). TgcoreOVE-Cre successfully marked the OV-derived inner ear tissues, including cochlea, semicircular canal and spiral ganglion, when crossed with ROSA26 lacZ reporter mice. Furthermore, Gata3 conditionally mutant mice, when crossed with the TgcoreOVE-Cre, showed hypoplasia throughout the inner ear tissues. These results demonstrate that OVE has a sufficient regulatory activity to direct Gata3 expression specifically in the otic vesicle and semicircular canal and that Gata3 expression driven by the OVE is crucial for normal inner ear development.


Assuntos
Orelha Interna/crescimento & desenvolvimento , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Mol Cell Biol ; 36(17): 2272-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27296697

RESUMO

GATA3 is a zinc finger transcription factor that plays a crucial role in embryonic kidney development, while its precise functions in the adult kidney remain largely unexplored. Here, we demonstrate that GATA3 is specifically expressed in glomerular mesangial cells and plays a critical role in the maintenance of renal glomerular function. Newly generated Gata3 hypomorphic mutant mice exhibited neonatal lethality associated with severe renal hypoplasia. Normal kidney size was restored by breeding the hypomorphic mutant with a rescuing transgenic mouse line bearing a 662-kb Gata3 yeast artificial chromosome (YAC), and these animals (termed G3YR mice) survived to adulthood. However, most of the G3YR mice showed degenerative changes in glomerular mesangial cells, which deteriorated progressively during postnatal development. Consequently, the G3YR adult mice suffered severe renal failure. We found that the 662-kb Gata3 YAC transgene recapitulated Gata3 expression in the renal tubules but failed to direct sufficient GATA3 activity to mesangial cells. Renal glomeruli of the G3YR mice had significantly reduced amounts of platelet-derived growth factor receptor (PDGFR), which is known to participate in the development and maintenance of glomerular mesangial cells. These results demonstrate a critical role for GATA3 in the maintenance of mesangial cells and its absolute requirement for prevention of glomerular disease.


Assuntos
Cromossomos Artificiais de Levedura/genética , Fator de Transcrição GATA3/genética , Mesângio Glomerular/patologia , Nefropatias/genética , Animais , Modelos Animais de Doenças , Fator de Transcrição GATA3/metabolismo , Mesângio Glomerular/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Camundongos , Camundongos Transgênicos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transgenes
10.
Dev Biol ; 409(1): 218-233, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26542011

RESUMO

Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema.


Assuntos
Vasos Linfáticos/embriologia , Linfedema/embriologia , Linfedema/patologia , Válvulas Venosas/embriologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Vasos Linfáticos/ultraestrutura , Camundongos Endogâmicos C57BL , Morfogênese , Penetrância , Fenótipo , Válvulas Venosas/ultraestrutura
11.
Genes Dev ; 29(18): 1930-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385963

RESUMO

Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene.


Assuntos
Alelos , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica/genética , Linfócitos T/metabolismo , Animais , Medula Óssea/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fator de Transcrição GATA3/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/genética , Timócitos/citologia , Timócitos/metabolismo , Transativadores/genética
12.
Blood ; 126(3): 386-96, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26031919

RESUMO

Inhibition of lysine-specific demethylase 1 (LSD1) has been shown to induce fetal hemoglobin (HbF) levels in cultured human erythroid cells in vitro. Here we report the in vivo effects of LSD1 inactivation by a selective and more potent inhibitor, RN-1, in a sickle cell disease (SCD) mouse model. Compared with untreated animals, RN-1 administration leads to induced HbF synthesis and to increased frequencies of HbF-positive cells and mature erythrocytes, as well as fewer reticulocytes and sickle cells, in the peripheral blood of treated SCD mice. In keeping with these observations, histologic analyses of the liver and spleen of treated SCD mice verified that they do not exhibit the necrotic lesions that are usually associated with SCD. These data indicate that RN-1 can effectively induce HbF levels in red blood cells and reduce disease pathology in SCD mice, and may therefore offer new therapeutic possibilities for treating SCD.


Assuntos
Anemia Falciforme/prevenção & controle , Hemoglobina Fetal/biossíntese , Histona Desmetilases/antagonistas & inibidores , Rodaminas/farmacologia , Compostos de Espiro/farmacologia , Esplenomegalia/prevenção & controle , Tiofenos/farmacologia , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Hemoglobina Fetal/efeitos dos fármacos , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esplenomegalia/sangue , Esplenomegalia/patologia , Globinas beta/genética , Globinas beta/metabolismo
13.
Blood ; 125(9): 1477-87, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25561507

RESUMO

The orphan nuclear receptors TR2 and TR4 have been shown to play key roles in repressing the embryonic and fetal globin genes in erythroid cells. However, combined germline inactivation of Tr2 and Tr4 leads to periimplantation lethal demise in inbred mice. Hence, we have previously been unable to examine the consequences of their dual loss of function in adult definitive erythroid cells. To circumvent this issue, we generated conditional null mutants in both genes and performed gene inactivation in vitro in adult bone marrow cells. Compound Tr2/Tr4 loss of function led to induced expression of the embryonic εy and ßh1 globins (murine counterparts of the human ε- and γ-globin genes). Additionally, TR2/TR4 function is required for terminal erythroid cell maturation. Loss of TR2/TR4 abolished their occupancy on the εy and ßh1 gene promoters, and concurrently impaired co-occupancy by interacting corepressors. These data strongly support the hypothesis that the TR2/TR4 core complex is an adult stage-specific, gene-selective repressor of the embryonic globin genes. Detailed mechanistic understanding of the roles of TR2/TR4 and their cofactors in embryonic and fetal globin gene repression may ultimately enhance the discovery of novel therapeutic agents that can effectively inhibit their transcriptional activity and be safely applied to the treatment of ß-globinopathies.


Assuntos
Embrião de Mamíferos/metabolismo , Células Eritroides/citologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/fisiologia , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Globinas beta/metabolismo , Animais , Western Blotting , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Células Eritroides/metabolismo , Citometria de Fluxo , Inativação Gênica , Humanos , Integrases/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Globinas beta/genética
14.
Nat Commun ; 5: 3998, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894949

RESUMO

Notch1-Delta-like 4 (Dll4) signalling controls vascular development by regulating endothelial cell (EC) targets that modulate vessel wall remodelling and arterial-venous specification. The molecular effectors that modulate Notch signalling during vascular development remain largely undefined. Here we demonstrate that the transcriptional repressor, Snail1, acts as a VEGF-induced regulator of Notch1 signalling and Dll4 expression. EC-specific Snail1 loss-of-function conditional knockout mice die in utero with defects in vessel wall remodelling in association with losses in mural cell investment and disruptions in arterial-venous specification. Snail1 loss-of-function conditional knockout embryos further display upregulated Notch1 signalling and Dll4 expression that is partially reversed by inhibiting γ-secretase activity in vivo with Dll4 identified as a direct target of Snail1-mediated transcriptional repression. These results document a Snail1-Dll4/Notch1 axis that controls embryonic vascular development.


Assuntos
Vasos Sanguíneos/embriologia , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Transição Epitelial-Mesenquimal , Retroalimentação Fisiológica , Técnicas In Vitro , Camundongos , Camundongos Knockout , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Remodelação Vascular/genética
15.
PLoS Genet ; 10(5): e1004339, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24811540

RESUMO

We previously reported that TR2 and TR4 orphan nuclear receptors bind to direct repeat (DR) elements in the ε- and γ-globin promoters, and act as molecular anchors for the recruitment of epigenetic corepressors of the multifaceted DRED complex, thereby leading to ε- and γ-globin transcriptional repression during definitive erythropoiesis. Other than the ε- and γ-globin and the GATA1 genes, TR4-regulated target genes in human erythroid cells remain unknown. Here, we identified TR4 binding sites genome-wide using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) as human primary CD34(+) hematopoietic progenitors differentiated progressively to late erythroid precursors. We also performed whole transcriptome analyses by RNA-seq to identify TR4 downstream targets after lentiviral-mediated TR4 shRNA knockdown in erythroid cells. Analyses from combined ChIP-seq and RNA-seq datasets indicate that DR1 motifs are more prevalent in the proximal promoters of TR4 direct target genes, which are involved in basic biological functions (e.g., mRNA processing, ribosomal assembly, RNA splicing and primary metabolic processes). In contrast, other non-DR1 repeat motifs (DR4, ER6 and IR1) are more prevalent at gene-distal TR4 binding sites. Of these, approximately 50% are also marked with epigenetic chromatin signatures (such as P300, H3K27ac, H3K4me1 and H3K27me3) associated with enhancer function. Thus, we hypothesize that TR4 regulates gene transcription via gene-proximal DR1 sites as TR4/TR2 heterodimers, while it can associate with novel nuclear receptor partners (such as RXR) to bind to distant non-DR1 consensus sites. In summary, this study reveals that the TR4 regulatory network is far more complex than previously appreciated and that TR4 regulates basic, essential biological processes during the terminal differentiation of human erythroid cells.


Assuntos
Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Genoma Humano , Humanos , Proteínas Nucleares/química , Proteínas Repressoras/química
16.
Hum Mol Genet ; 23(17): 4528-42, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24781209

RESUMO

To globally survey the changes in transcriptional landscape during terminal erythroid differentiation, we performed RNA sequencing (RNA-seq) on primary human CD34(+) cells after ex vivo differentiation from the earliest into the most mature erythroid cell stages. This analysis identified thousands of novel intergenic and intronic transcripts as well as novel alternative transcript isoforms. After rigorous data filtering, 51 (presumptive) novel protein-coding transcripts, 5326 long and 679 small non-coding RNA candidates remained. The analysis also revealed two clear transcriptional trends during terminal erythroid differentiation: first, the complexity of transcript diversity was predominantly achieved by alternative splicing, and second, splicing junctional diversity diminished during erythroid differentiation. Finally, 404 genes that were not known previously to be differentially expressed in erythroid cells were annotated. Analysis of the most extremely differentially expressed transcripts revealed that these gene products were all closely associated with hematopoietic lineage differentiation. Taken together, this study will serve as a comprehensive platform for future in-depth investigation of human erythroid development that, in turn, may reveal new insights into multiple layers of the transcriptional regulatory hierarchy that controls erythropoiesis.


Assuntos
Eritropoese/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Adulto , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Fases de Leitura Aberta/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Análise de Sequência de RNA , Globinas beta/metabolismo
17.
Mol Cell Biol ; 34(11): 1956-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662048

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1ß have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1ß compound null mutant (Pgc-1(c)) animals express less ß-like globin mRNAs throughout development; consequently, neonatal Pgc-1(c) mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1(c) pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1(c) livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1ß, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1ß can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription.


Assuntos
Eritropoese/genética , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Globinas beta/genética , Anemia/genética , Animais , Apoptose/genética , Contagem de Eritrócitos , Células Eritroides/metabolismo , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica , Fígado/citologia , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Baço/citologia , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional/genética , alfa-Globinas
18.
Gastroenterology ; 146(1): 157-165.e10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120474

RESUMO

BACKGROUND & AIMS: Infantile hypertrophic pyloric stenosis is a common birth anomaly characterized by obstruction of the pyloric lumen. A genome-wide association study implicated NKX2-5, which encodes a transcription factor that is expressed in embryonic heart and pylorus, in the pathogenesis of infantile hypertrophic pyloric stenosis. However, the function of the NKX2-5 in pyloric smooth muscle development has not been examined directly. We investigated the pattern of Nkx2-5 during the course of murine pyloric sphincter development and examined coexpression of Nkx2-5 with Gata3 and Sox9-other transcription factors with pyloric-specific mesenchymal expression. We also assessed pyloric sphincter development in mice with disruption of Nkx2-5 or Gata3. METHODS: We used immunofluorescence analysis to compare levels of NKX2-5, GATA3, and SOX9 in different regions of smooth muscle cells. Pyloric development was assessed in mice with conditional or germline deletion of Nkx2-5 or Gata3, respectively. RESULTS: Gata3, Nkx2-5, and Sox9 are coexpressed in differentiating smooth muscle cells of a distinct fascicle of the pyloric outer longitudinal muscle. Expansion of this fascicle coincides with development of the pyloric sphincter. Disruption of Nkx2-5 or Gata3 causes severe hypoplasia of this fascicle and alters pyloric muscle shape. Although expression of Sox9 requires Nkx2-5 and Gata3, there is no apparent hierarchical relationship between Nkx2-5 and Gata3 during pyloric outer longitudinal muscle development. CONCLUSIONS: Nkx2-5 and Gata3 are independently required for the development of a pyloric outer longitudinal muscle fascicle, which is required for pyloric sphincter morphogenesis in mice. These data indicate that regulatory changes that alter Nkx2-5 or Gata3 expression could contribute to pathogenesis of infantile hypertrophic pyloric stenosis.


Assuntos
Fator de Transcrição GATA3/metabolismo , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Piloro/embriologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo , Animais , Imunofluorescência , Proteína Homeobox Nkx-2.5 , Camundongos , Músculo Liso/metabolismo , Piloro/metabolismo
19.
J Clin Invest ; 122(10): 3705-17, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22996665

RESUMO

The transcription factor GATA-2 plays vital roles in quite diverse developmental programs, including hematopoietic stem cell (HSC) survival and proliferation. We previously identified a vascular endothelial (VE) enhancer that regulates GATA-2 activity in pan-endothelial cells. To more thoroughly define the in vivo regulatory properties of this enhancer, we generated a tamoxifen-inducible Cre transgenic mouse line using the Gata2 VE enhancer (Gata2 VECre) and utilized it to temporally direct tissue-specific conditional loss of Gata2. Here, we report that Gata2 VECre-mediated loss of GATA-2 led to anemia, hemorrhage, and eventual death in edematous embryos. We further determined that the etiology of anemia in conditional Gata2 mutant embryos involved HSC loss in the fetal liver, as demonstrated by in vitro colony-forming and immunophenotypic as well as in vivo long-term competitive repopulation experiments. We further documented that the edema and hemorrhage in conditional Gata2 mutant embryos were due to defective lymphatic development. Thus, we unexpectedly discovered that in addition to its contribution to endothelial cell development, the VE enhancer also regulates GATA-2 expression in definitive fetal liver and adult BM HSCs, and that GATA-2 function is required for proper lymphatic vascular development during embryogenesis.


Assuntos
Anemia/genética , Elementos Facilitadores Genéticos , Morte Fetal/genética , Fator de Transcrição GATA2/fisiologia , Hematopoese/genética , Hemorragia/genética , Sistema Linfático/embriologia , Anemia/embriologia , Animais , Divisão Celular , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Feminino , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Genes Reporter , Células-Tronco Hematopoéticas/patologia , Hemorragia/embriologia , Imunofenotipagem , Fígado/citologia , Fígado/embriologia , Sistema Linfático/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Gravidez , Tamoxifeno/farmacologia
20.
Mol Cell Biol ; 32(12): 2312-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22493062

RESUMO

During renal development, the proper emergence of the ureteric bud (UB) from the Wolffian duct is essential for formation of the urinary system. Previously, we showed that expression of transcription factor GATA-2 in the urogenital primordium was demarcated anteroposteriorly into two domains that were regulated by separate enhancers. While GATA-2 expression in the caudal urogenital mesenchyme is controlled by the UG4 enhancer, its more-rostral expression is regulated by UG2. We found that anteriorly displaced budding led to obstructed megaureters in Gata2 hypomorphic mutant mice, possibly due to reduced expression of the downstream effector bone morphogenetic protein 4 (BMP4). Here, we report that UG4-driven, but not UG2-driven, GATA-2 expression in the urogenital mesenchyme significantly reverts the uropathy observed in the Gata2 hypomorphic mutant mice. Furthermore, the data show that transgenic rescue by GATA-2 reverses the rostral outgrowth of the UB. We also provide evidence for a GATA-2-BMP4 epistatic relationship by demonstrating that reporter gene expression from a Bmp4 bacterial artificial chromosome (BAC) transgene is altered in Gata2 hypomorphs; furthermore, UG4-directed BMP4 expression in the mutants leads to reduced incidence of megaureters. These results demonstrate that GATA-2 expression in the caudal urogenital mesenchyme as directed by the UG4 enhancer is crucial for proper development of the urinary tract and that its regulation of BMP4 expression is a critical aspect of this function.


Assuntos
Proteína Morfogenética Óssea 4 , Elementos Facilitadores Genéticos , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Urogenital , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Fator de Transcrição GATA2/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Mutação , Anormalidades Urogenitais , Sistema Urogenital/embriologia , Sistema Urogenital/metabolismo , Refluxo Vesicoureteral/etiologia , Refluxo Vesicoureteral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...