Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(22): 10779-10788, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38757983

RESUMO

The properties of transition metal dichalcogenides (TMDCs) are critically dependent on the dielectric constant of substrates, which significantly limits their application. To address this issue, we used a perfluorinated polyether (PFPE) self-assembled monolayer (SAM) with low surface energy to increase the van der Waals (vdW) gap between TMDCs and the substrate, thereby reducing the interaction between them. This resulted in a reduction in the subthreshold swing value, an increase in the photoluminescence intensity of excitons, and a decrease in the doping effect by the substrate. This work will provide a new way to control the TMDC/dielectric interface and contribute to expanding the applicability of TMDCs.

2.
ACS Nano ; 18(1): 220-228, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127273

RESUMO

The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.

3.
Nanotechnology ; 35(3)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804823

RESUMO

Two-dimensional material-based field-effect transistors are promising for future use in electronic and optoelectronic applications. However, trap states existing in the transistors are known to hinder device performance. They capture/release carriers in the channel and lead to hysteresis in the transfer characteristics. In this work, we fabricated MoTe2field-effect transistors on two different gate dielectrics, SiO2and h-BN, and investigated temperature-dependent charge trapping behavior on the hysteresis in their transfer curves. We observed that devices with SiO2back-gate dielectric are affected by both SiO2insulator traps and MoTe2intrinsic bulk traps, with the latter becoming prominent at temperatures above 310 K. Conversely, devices with h-BN back-gate dielectric, which host a negligible number of insulator traps, primarily exhibit MoTe2bulk traps at high temperatures, enabling us to estimate the trap energy level at 389 meV below the conduction band edge. A similar energy level of 396 meV below the conduction band edge was observed from the emission current transient measurement. From a previous computational study, we expect these trap states to be the tellurium vacancy. Our results suggest that charge traps in MoTe2field-effect transistors can be reduced by careful selection of gate insulators, thus providing guidelines for device fabrication.

4.
Appl Opt ; 62(18): 4805-4812, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37707255

RESUMO

We present an integrating hemisphere-based (i.e., a variant of integrating spheres) implementation of the indirect illumination method for absolute photoluminescence quantum yield measurements, which is a recommended method in the international standard IEC 62607-3-1:2014. We rigorously formulated a mathematical model and a measurement procedure for the absolute photoluminescence quantum yield measurement in the integrating hemisphere-based system. The measurement system was calibrated using an Hg-Ar discharge lamp and spectral irradiance standard lamps for wavelength and relative spectral radiant flux scales, respectively. Furthermore, we identified and evaluated uncertainty components involved in the photoluminescence quantum yield (PLQY) measurement. To validate our measurement system, we applied it to the two de facto standard dyes: quinine bisulfate (QBS) and fluorescein (FLS). Consequently, their PLQY values were determined to be 0.563±0.024 (k=2) and 0.876±0.032 (k=2) for, respectively, QBS and FLS, which are consistent with previous reports.

5.
Nano Lett ; 23(17): 7927-7933, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647420

RESUMO

Transition metal dichalcogenides (TMDs) benefit electrical devices with spin-orbit coupling and valley- and topology-related properties. However, TMD-based devices suffer from traps arising from defect sites inside the channel and the gate oxide interface. Deactivating them requires independent treatments, because the origins are dissimilar. This study introduces a single treatment to passivate defects in a multilayer MoS2 FET. By applying back-gate bias, protons from an H-TFSI droplet are injected into the MoS2, penetrating deeply enough to reach the SiO2 gate oxide. The characterizations employing low-temperature transport and deep-level transient spectroscopy (DLTS) studies reveal that the trap density of S vacancies in MoS2 drops to the lowest detection level. The temperature-dependent mobility plot on the SiO2 substrate resembles that of the h-BN substrate, implying that dangling bonds in SiO2 are passivated. The carrier mobility on the SiO2 substrate is enhanced by approximately 2200% after the injection.

6.
Adv Sci (Weinh) ; 10(25): e2300925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424035

RESUMO

Graphdiyne (GDY), a new 2D material, has recently proven excellent performance in photodetector applications due to its direct bandgap and high mobility. Different from the zero-gap of graphene, these preeminent properties made GDY emerge as a rising star for solving the bottleneck of graphene-based inefficient heterojunction. Herein, a highly effective graphdiyne/molybdenum (GDY/MoS2 ) type-II heterojunction in a charge separation is reported toward a high-performance photodetector. Characterized by robust electron repulsion of alkyne-rich skeleton, the GDY based junction facilitates the effective electron-hole pairs separation and transfer. This results in significant suppression of Auger recombination up to six times at the GDY/MoS2 interface compared with the pristine materials owing to an ultrafast hot hole transfer from MoS2 to GDY. GDY/MoS2 device demonstrates notable photovoltaic behavior with a short-circuit current of -1.3 × 10-5 A and a large open-circuit voltage of 0.23 V under visible irradiation. As a positive-charge-attracting magnet, under illumination, alkyne-rich framework induces positive photogating effect on the neighboring MoS2 , further enhancing photocurrent. Consequently, the device exhibits broadband detection (453-1064 nm) with a maximum responsivity of 78.5 A W-1 and a high speed of 50 µs. Results open up a new promising strategy using GDY toward effective junction for future optoelectronic applications.

7.
Nano Lett ; 22(13): 5207-5213, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35729739

RESUMO

The two different light-matter interactions between visible and infrared light are not switchable because control mechanisms have not been elucidated so far, which restricts the effective spectral range in light-sensing devices. In this study, modulation of the effective spectral range is demonstrated using the metal-insulator transition of MoS2. Nondegenerate MoS2 exhibits a photoconductive effect in detecting visible light. In contrast, degenerate MoS2 responds only to mid-infrared (not visible) light by displaying a photoinduced heating effect via free carrier absorption. Depending on the doping level, the optical behavior of MoS2 simulates the photoconductivity of either the semiconductor or the metal, further indicating that the optical metal-insulator transition is coherent with its electrical counterpart. The electrical switchability of MoS2 enables the development of an unprecedented and novel design optical sensor that can detect both visible and mid-IR (wavelength of 9.6 µm) ranges with a singular optoelectronic device.

8.
Materials (Basel) ; 14(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771948

RESUMO

In this study, we fabricated and characterized uniform multi-cation perovskite FAxMA1-xPbI3 films. We used the dynamic spin-coating method to control the cation ratio of the film by gradually increasing the FA+, which replaced the MA+ in the films. When the FA+ concentration was lower than xFA ~0.415 in the films, the stability of the multi-cation perovskite improved. Above this concentration, the film exhibited δ-phase FAPbI3 in the FAxMA1-xPbI3 films. The formation of δ-phase FAPbI3 disturbed the homogeneity of the photoluminescence spatial distribution and suppressed the absorption spectral bandwidth with the increasing bandgap. The precise control of the cation ratio of multi-cation perovskite films is necessary to optimize the energy-harvesting performance.

9.
ACS Appl Mater Interfaces ; 13(34): 40891-40900, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470107

RESUMO

Organometal halide perovskite materials are receiving significant attention for the fabrication of resistive-switching memory devices based on their high stability, low power consumption, rapid switching, and high ON/OFF ratios. In this study, we synthesized 3D FAPbBr3 and quasi-2D (RNH3)2(FA)1Pb2Br7 films using an acid-base binary ligand solution composed of oleylamine (OlAm) and oleic acid in toluene. The quasi-2D (RNH3)2(FA)1Pb2Br7 films were synthesized by controlling the protonated OlAm (RNH3+) solution concentration to replace FA+ cations with large organic RNH3+ cations from 3D FAPbBr3 perovskites. The quasi-2D (RNH3)2(FA)1Pb2Br7 devices exhibited nonvolatile write-once read-many (WORM) memory characteristics, whereas the 3D FAPbBr3 only exhibited hysteresis behavior. Analysis of the 3D FAPbBr3 device indicated operation in the trap-limited space-charge-limited current region. In contrast, quasi-2D (RNH3)2(FA)1Pb2Br7 devices provide low trap density that is completely filled by injected charge carriers and then subsequently form conductive filaments (CFs) to operate as WORM devices. Nanoscale morphology analysis and an associated current mapping study based on conductive atomic force microscopy measurements revealed that perovskite grain boundaries serve as major channels for high current, which may be correlated with the conductive low-resistive-switching behavior and formation of CFs in WORM devices.

10.
Adv Sci (Weinh) ; 8(19): e2102437, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365721

RESUMO

Recently, there have been numerous studies on utilizing surface treatments or photosensitizing layers to improve photodetectors based on 2D materials. Meanwhile, avalanche breakdown phenomenon has provided an ultimate high-gain route toward photodetection in the form of single-photon detectors. Here, the authors report ultrasensitive avalanche phototransistors based on monolayer MoS2 synthesized by chemical vapor deposition. A lower critical field for the electrical breakdown under illumination shows strong evidence for avalanche breakdown initiated by photogenerated carriers in MoS2 channel. By utilizing the photo-initiated carrier multiplication, their avalanche photodetectors exhibit the maximum responsivity of ≈3.4 × 107 A W-1 and the detectivity of ≈4.3 × 1016 Jones under a low dark current, which are a few orders of magnitudes higher than the highest values reported previously, despite the absence of any additional chemical treatments or photosensitizing layers. The realization of both the ultrahigh photoresponsivity and detectivity is attributed to the interplay between the carrier multiplication by avalanche breakdown and carrier injection across a Schottky barrier between the channel and metal electrodes. This work presents a simple and powerful method to enhance the performance of photodetectors based on carrier multiplication phenomena in 2D materials and provides the underlying physics of atomically thin avalanche photodetectors.

11.
Materials (Basel) ; 14(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34442999

RESUMO

The 1D wire TaS3 exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (Tp), near 210 K. Using the 3ω method, we measured the thermal conductivity κ of TaS3 as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann-Franz law states that the thermal conductivity κ of a metal is proportional to the electrical conductivity σ with a proportional coefficient of L0, known as the Lorenz number-that is, κ=σLoT. Our characterization of the thermal conductivity of metallic TaS3 reveals that, at a given temperature T, the thermal conductivity κ is much higher than the value estimated in the Wiedemann-Franz (W-F) law. The thermal conductivity of metallic TaS3 was approximately 12 times larger than predicted by W-F law, implying L=12L0. This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for.

12.
ACS Appl Mater Interfaces ; 12(43): 48890-48898, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985174

RESUMO

Interfacial effects on single-layer graphene (SLG) or multilayer graphene (MLG) properties greatly affect device performance. Thus, the effect of the interface on the temperature coefficient of resistance (TCR) on SLG and MLG due to surface-deposited core-shell metallic nanoparticles (MNPs) and various substrates was experimentally investigated. Observed substrates included glass, SiO2, and Si3N4. We show that these modifications can be used to strongly influence SLG interface effects, thus increasing the TCR up to a 0.456% per K resistance change when in contact with the SiO2 substrate at the bottom surface and MNPs on the top surface. However, these surface interactions are muted in MLG due to the screening effect of nonsuperficial layers, only achieving a -0.0998% per K resistance change in contact with the bottom Si3N4 substrate and the top MNPs. We also demonstrate contrary thermal sensitivity responses between SLG and MLG after the addition of MNP to the surface.

13.
Nanotechnology ; 31(25): 255201, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163941

RESUMO

In field-effect transistors (FETs), when the thickness of the semiconducting transition metal dichalcogenides (TMDs) channel exceeds the maximum depletion depth, the entire region cannot be completely controlled by a single-gate electric field. The layer-to-layer carrier transitions between the van der Waals interacted TMD layers result in the extraordinary anisotropic carrier transport in the in-plane and out-of-plane directions. The performance of the TMD FETs can be largely enhanced by optimizing the thickness of the TMD channel as well as increasing the effective channel area through which the gate field is delivered. In this study, we investigated the carrier behavior and device performance in double-gate FETs fabricated using a 57 nm thick MoS2, which is thicker than the maximum depletion depth of about 50 nm, and a much thinner 4 nm thick MoS2. The results showed that in the thick MoS2, the gate voltages at both ends formed two independent channels which had no synergistic effect on the device performance owing to the inefficient delivery of the vertical electric field. On the other hand, in the thin MoS2 channel, the double-gate voltages effectively controlled one channel, resulting in twice the carrier mobility and operation in a low electric field region, i.e. below 0.2 MV cm-1.

14.
ACS Appl Mater Interfaces ; 11(32): 29022-29028, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313897

RESUMO

The transport behaviors of MoS2 field-effect transistors (FETs) with various channel thicknesses are studied. In a 12 nm thick MoS2 FET, a typical switching behavior is observed with an Ion/Ioff ratio of 106. However, in 70 nm thick MoS2 FETs, the gating effect weakens with a large off-current, resulting from the screening of the gate field by the carriers formed through the ionization of S vacancies at 300 K. Hence, when the latter is dual-gated, two independent conductions develop with different threshold voltage (VTH) and field-effect mobility (µFE) values. When the temperature is lowered for the latter, both the ionization of S vacancies and the gate-field screening reduce, which revives the strong Ion/Ioff ratio and merges the two separate channels into one. Thus, only one each of VTH and µFE are seen from the thick MoS2 FET when the temperature is less than 80 K. The change of the number of conduction channels is attributed to the ionization of S vacancies, which leads to a temperature-dependent intra- and interlayer conductance and the attenuation of the electrostatic gate field. The defect-related transport behavior of thick MoS2 enables us to propose a new device structure that can be further developed to a vertical inverter inside a single MoS2 flake.

15.
Nanotechnology ; 30(34): 345206, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31051484

RESUMO

Compared to the silicon device whose performance is severely degraded due to the pin-holes and channel inactive space when the channel thickness is less than 1 nm, despite monolayer transition-metal dichalcogenides being the most stable structure to be used as a two-dimensional semiconductor material, precise analysis of the double-gate (DG) field-effect transistor (FET) device structure has hardly been performed thus far. Hence, we analyzed the device operation characteristics of single-gate and DG sweeps in a monolayer MoS2 DG FET structure, where the interfacial carrier behavior is distinguished from both gates by the different gate dielectric materials at the top and bottom. The synchronized DG sweep operation with biasing of V TG and V BG (=10 V TG ) increased the carrier mobility by a factor of 4.85 compared with the independent DG sweep. Direct-current analysis and low-frequency noise modeling indicate that the device performance improves under equivalent gate voltages from both sides, because the device operates in a low vertical electric field and the interfacial carrier fluctuation effect is significantly reduced.

16.
ACS Appl Mater Interfaces ; 11(21): 19565-19571, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31045342

RESUMO

Both photothermal and photovoltaic infrared (IR) detectors employ sensing materials that have an optical band gap. Different from these conventional materials, graphene has a conical band structure that imposes zero band gap. In this study, using the semimetallic multilayer graphene, IR detection at room temperature is realized. The relatively high Seebeck coefficient, ranging from 40 to 60 µV/K, compared to that of the metal, and the large optical absorption in the mid-IR region, in the wavelength range of 7-17 µm, enable graphene to detect IR without an absorber, which is essential for most IR detectors because the band gap of the sensing materials is much larger than the energy of IR and the incident IR can be absorbed directly by the sensing material. Thus, the incident IR can be absorbed directly by the sensing material in our device. The developed detector with a SiN membrane shows high responsivity and detectivity, which are 140 V/W and 5 × 108 cm·Hz1/2/W at 5 Hz, respectively. In addition, the IR sensor shows a response time of 600 µs. In the room-temperature operation of the IR sensor array without cooling, our sensors detect IR emitted from a human body and track the movement. The availability of large-area graphene in current technology opens new applications for metallic two-dimensional materials and a possibility for scale-up.

17.
ACS Nano ; 13(4): 4478-4485, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30938981

RESUMO

Various functional devices including p-n forward, backward, and Zener diodes are realized with a van der Waals heterostructure that are composed of molybdenum disulfide (MoS2) and molybdenum ditelluride (MoTe2) by changing the thickness of the MoTe2 layer and common gate bias. In addition, the available negative differential transconductance of the heterostructure is utilized to fabricate a many-valued logic device that exhibits three different logic states ( i.e., a ternary inverter). Furthermore, the multivalued logic device can be transformed into a binary inverter using laser irradiation. This work provides a comprehensive understanding of the device fabrication and electronic-device design utilizing thickness control.

18.
ACS Appl Mater Interfaces ; 11(10): 10068-10073, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30762341

RESUMO

Imperfections in the crystal lattice, such as defects, grain boundaries, or dislocations, can significantly affect the optical and electrical transport properties of materials. In this study, we report the effect of mid gap trap states on photocurrent in 10 atomic layered 2H-MoTe2. Our study reveals that the photocurrent is very sensitive to the number of active traps, which can be controlled by Vgs. By fitting the measured transient drain current, our estimation shows that the trap-state density is approximately 5 × 1011 cm-2. By analyzing the photocurrent data as a function of the gate voltage, we realize how the ionized traps affect the photoexcited carriers. The model of hole traps, electron traps, and recombination centers inside the band gap successfully describes our observed results.

19.
Nanoscale ; 10(42): 20054, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30350838

RESUMO

Correction for 'Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition' by Jung Jun Bae et al., Nanoscale, 2017, 9, 2541-2547.

20.
Nanoscale ; 10(26): 12322-12329, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946582

RESUMO

The Ids-Vds properties of a van der Waals cross-junction of few layered MoS2/MoTe2 were investigated, and the physical device parameters were altered in order to transform the conduction mechanism from thermionic emission to interband tunneling. The pristine heterostructure demonstrated rectification behavior of typical p-n junction diodes, because of the p-type and n-type nature of MoTe2 and MoS2, respectively. Lowering the contact resistance between the metal and channel materials, by changing the electrode metals from Au to Pd and Ti, alone did not give rise to carrier conduction through the hetero-interband tunneling between MoTe2 and MoS2. In addition to the reduction in contact resistance, the chemical doping of MoS2 using Benzyl Viologen (BV) achieves hetero-interband tunneling between MoTe2 and MoS2, which probably narrows the depletion layer by degenerating MoS2. The peak-to-valley ratio of the tunneling current of the BV-doped heterostructure of MoS2/MoTe2 is about 4.8, which is comparable to that of the commercially available Si tunneling diode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...