Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 6(20): 12111-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25196022

RESUMO

A critical issue for maintaining long-term applications of polymer electrolyte fuel cells (PEFCs) is the development of an innovative technique for the functionalization of a carbon support that preserves their exceptional electrical conductivity and robustly enriches their durability. Here, we report for the first time how the formation of a partially coated, ultrathin, hydrophobic silica layer around the surfaces of the carbon nanofiber (CNF) helps improve the durability of the CNF without decreasing the significant electrical conductivity of the virgin CNF. The synthesis involved the adsorption of polycarbomethylsilane (PS) on the CNF's sidewalls, followed by high temperature pyrolysis of PS, resulting in a highly durable, conductive carbon support in PEFCs. The Pt nanoparticles are in direct contact with the surface of the carbon in the empty spaces between unevenly coated silica layers, which are not deposited directly onto the silica layer. The presence of a Pt nanoparticle layer that was thicker than the silica layer would be a quite advantageous circumstance that provides contact with other neighboring CNFs without having a significant adverse effect that deeply damages the electrical conductivity of the neighboring CNF composites with the silica layer. Furthermore, the ultrathin, hydrophobic silica layer around the surfaces of the CNF provides great potential to reduce the presence of water molecules in the vicinity of the carbon supports and the ˙OH radicals formed on the surface of the Pt catalyst. As a result, the CNF with a 5 wt% silica layer that we prepared has had extremely high initial performance and durability under severe carbon corrosion conditions, starting up with 974 mA cm(-2) at 0.6 V and ending up with more than 58% of the initial performance (i.e., 569 mA cm(-2) at 0.6 V) after a 1.6 V holding test for 6 h. The beginning-of-life and end-of-life performances based on the virgin CNF without the silica layer were 981 and 340 mA cm(-2) at 0.6 V, respectively. The CNF having a silica layer had long-term durability which was superior to that of the virgin CNF.

2.
Langmuir ; 28(7): 3664-70, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22276903

RESUMO

Highly dispersed Pd nanoparticles were prepared by borohydride reduction of Pd(acac)(2) in 1,2-propanediol at an elevated temperature. They were uniformly dispersed on carbon black without significant aggregation. X-ray diffraction showed that carbons from the Pd precursor dissolved in Pd, increasing its lattice parameter. A modified reduction process was tested to remove the carbon impurities. Carbon removal greatly enhanced catalytic activity toward the oxygen reduction reaction. It also generated an inconsistency between the electronic modifications obtained from X-ray photoelectron spectroscopy and the electrochemical method. CO displacement measurements showed that the formation of Pd-C bonds decreased the work function of the surface Pd atoms.

3.
Nanomaterials (Basel) ; 2(2): 206-216, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28348304

RESUMO

An easy method to synthesize SiOx coated carbon nanotubes (SiOx-CNT) through thermal decomposition of polycarbomethylsilane adsorbed on the surface of CNTs is reported. Physical properties of SiOx-CNT samples depending on various Si contents and synthesis conditions are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen isotherm, scanning electron microscope (SEM), and transmission electron microscope (TEM). Morphology of the SiOx-CNT appears to be perfectly identical to that of the pristine CNT. It is confirmed that SiOx is formed in a thin layer of approximately 1 nm thickness over the surface of CNTs. The specific surface area is significantly increased by the coating, because thin layer of SiOx is highly porous. The surface properties such as porosity and thickness of SiOx layers are found to be controlled by SiOx contents and heat treatment conditions. The preparation method in this study is to provide useful nano-hybrid composite materials with multi-functional surface properties.

4.
J Nanosci Nanotechnol ; 11(7): 5761-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121604

RESUMO

Reported herein is a simple template method for preparing mesoporous carbons (MPCs) from a mesophase pitch, using homemade nano-sized MgOs and MgO-carbon nanotube (CNT) composites as templates. Nano-sized MgO particles containing iron-molybdenum were synthesized through the heat treatment of the precursor ash, and the MgO-CNT composites were prepared via catalytic chemical vapor deposition of CH4 over the MgO-based particles. MPCs with a high surface area of 443-578 m2/g were obtained through the heat treatment of well-mixed mesophase pitch-MgO (or MgO-CNT), followed by mild-acid treatment to remove the MgO and other catalyst components. All the materials (the precursors, nano-particles, and MPCs) were analyzed via powder X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, and high resolution transmission electron microscopy. The formation of the pore structure in the MPCs is discussed, and the potential application of the MPC-CNT composite is demonstrated through cyclic voltammetry.

5.
J Nanosci Nanotechnol ; 11(7): 5775-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121606

RESUMO

Carbon nanofibers (CNFs) with uniquely oriented channels were prepared via selective catalytic gasification in air at 450 and 500 degrees C, using Pt or Ru nano particles as catalysts. Catalytic gasification was chosen because it can selectively generate channels in the vicinity of the catalyst particles at relatively low temperatures, where thermal oxidation does not intensively occur. The structures and surface properties of the CNFs were examined via X-ray diffraction, analysis of the nitrogen adsorption-desorption isotherms, and high-resolution transmission electron microscopy. The effects of the catalyst species and loading amount on the formation of pores (channels) were investigated. The gasification mechanism, especially the channeling direction, throught the selection of the gasification catalysts, is discussed based on the results. This process can be effectively utilized for preparation of porous carbons, which have a well-aligned graphitic structure, and also channel-type pores can be designed by selection of gasification catalysts and conditions. The present porous CNF can be applied for catalyst support in fuel cells, without further treatment (e.g., acid treatment for the removal of metallic components).

6.
J Nanosci Nanotechnol ; 11(7): 5788-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121608

RESUMO

Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

7.
J Nanosci Nanotechnol ; 11(7): 6350-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121714

RESUMO

The electrocatalytic activity of nitrogen-doped carbon nanofibers (N-CNFs), which are synthesized directly from vaporized acetonitrile over nickel-iron based catalysts, for oxygen reduction reaction (ORR), was investigated. The nitrogen content and specific surface area of N-CNFs can be controlled through the synthesis temperature (300-680 degrees C). The graphitization degree of N-CNFs also are significantly affected by the temperature, whereas the chemical compositions of nitrogen species are similar irrespective of the synthesis conditions. From measurement of the electrochemical double layer capacitance, the surface of N-CNFs is found to have stronger interaction with ions than undoped-carbon surfaces. Although N-CNFs show higher over-potential than Pt catalysts do, N-CNFs were observed to have a noticeable ORR activity, as opposed to the carbon samples without nitrogen doping. The activity dependency of N-CNFs on the content of the nitrogen with which they were doped is discussed, based on the experiment results. The single cell of the direct methanol fuel cell (DMFC) was tested to investigate the performance of a membrane-electrode assembly that includes N-CNFs as the cathode catalyst layer.

8.
Langmuir ; 25(14): 8268-73, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19425565

RESUMO

Carbon nanofibers containing a range of nitrogen contents of 1-10 atom % were directly synthesized by catalytic chemical vapor deposition over nickel-based catalysts at 350-600 degrees C using acetonitrile and acrylonitrile. The nitrogen content was controlled by careful choice of the reaction conditions. The N-doped carbon nanofibers showed herringbone structure with 20-60 nm diameter. X-ray photoelectron spectroscopy was applied to examine the chemical state of nitrogen in carbon nanofibers. Structural features of N-doped carbon nanofibers were examined in X-ray diffraction and electron microscopy. The mechanism for nitrogen including the structure of carbon nanofibers through the catalysis was discussed on the basis of the results.

9.
Langmuir ; 23(11): 6372-6, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17469858

RESUMO

Pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are synthesized in ethylene glycol (EG) in the presence of small amounts of AgNO3 and PVP without using Au seeds. The contents of Au and Ag in pentagonal nanobipyramids are determined by energy-dispersive X-ray spectroscopy (EDS). The EDS data demonstrates that this kind of nanoparticles is composed of Au/Ag alloys, not silver monolayers simply covering the surface of Au nanoparticles. Insights into the growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are discussed.

10.
Langmuir ; 23(2): 387-90, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209582

RESUMO

PtRu alloy nanoparticles (24 +/- 1 wt %, Ru/Pt atomic ratios = 0.91-0.97) supported on carbon nanofibers (CNFs) were prepared within a few minutes by using a microwave-polyol method. Three types of CNFs with very different surface structures, such as platelet, herringbone, and tubular ones, were used as new carbon supports. The dependence of particles sizes and electrochemical properties on the structures of CNFs was examined. It was found that the methanol fuel cell activities of PtRu/CNF catalysts were in the order of platelet > tubular > herringbone. The methanol fuel cell activities of PtRu/CNFs measured at 60 degrees C were 1.7-3.0 times higher than that of a standard PtRu (29 wt %, Ru/Pt atomic ratio = 0.92) catalyst loaded on carbon black (Vulcan XC72R) support. The best electrocatalytic activity was obtained for the platelet CNF, which is characterized by its edge surface and high graphitization degree.

11.
Langmuir ; 22(22): 9086-8, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17042513

RESUMO

Reported is the capacitive behavior of homogeneous and well-defined surfaces of pristine carbon nanofibers (CNFs) and surface-modified CNFs. The capacitances of the well-defined CNFs were measured with cyclic voltammetry to correlate the surface structure with capacitance. Among the studied pristine CNFs, the edge surfaces of platelet CNFs (PCNF) and herringbone CNFs were more effective in capacitive charging than the basal plane surface of tubular CNF by a factor of 3-5. Graphitization of PCNF (GPCNF) changed the edge surface of PCNF into a domelike basal plane surface, and the corresponding capacitances decreased from 12.5 to 3.2 F/g. A chemical oxidation of the GPCNF, however, recovered a clear edge surface by removal of the curved basal planes to increase the capacitance to 5.6 F/g. The difference in the contribution of the edge surface and basal-plane surface to the capacitance of CNF was discussed in terms of the anisotropic conductivity of graphitic materials.

12.
Appl Environ Microbiol ; 70(4): 2529-34, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066855

RESUMO

Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.


Assuntos
Achromobacter denitrificans/enzimologia , Alcaligenes/enzimologia , Transaminases/metabolismo , Achromobacter denitrificans/genética , Alcaligenes/genética , Aminas/isolamento & purificação , Sequência de Aminoácidos , Aminoácidos/isolamento & purificação , Sequência de Bases , Catálise , Primers do DNA/genética , DNA Bacteriano/genética , Cinética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transaminases/genética , beta-Alanina-Piruvato Transaminase
13.
Langmuir ; 20(13): 5559-63, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15986700

RESUMO

Carbon nanofiber/activated carbon fiber (CNF/ACF) composites with multifunctional surfaces were prepared through catalytic growth of CNFs on an ACF. Because of selective deposition of catalyst particles in ACF micropores, partial oxidation of ACF after catalyst impregnation was a critical step to control the surface area of the CNF/ACF composites, of which the surface functions can be synergistically performed by both the microporous surface of ACF and free edges of CNFs. CNF/ACF composites of this study are expected to provide an improved performance in SOx or NOx removal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...