Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Accid Anal Prev ; 79: 13-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795050

RESUMO

In spite of anatomic proximity of the facial skeleton and cranium, there is lack of information in the literature regarding the relationship between facial and brain injuries. This study aims to correlate brain injuries with facial injuries using finite element method (FEM). Nine common impact scenarios of facial injuries are simulated with their individual stress wave propagation paths in the facial skeleton and the intracranial brain. Fractures of cranio-facial bones and intracranial injuries are evaluated based on the tolerance limits of the biomechanical parameters. General trend of maximum intracranial biomechanical parameters found in nasal bone and zygomaticomaxillary impacts indicates that severity of brain injury is highly associated with the proximity of location of impact to the brain. It is hypothesized that the midface is capable of absorbing considerable energy and protecting the brain from impact. The nasal cartilages dissipate the impact energy in the form of large scale deformation and fracture, with the vomer-ethmoid diverging stress to the "crumpling zone" of air-filled sphenoid and ethmoidal sinuses; in its most natural manner, the face protects the brain. This numerical study hopes to provide surgeons some insight in what possible brain injuries to be expected in various scenarios of facial trauma and to help in better diagnosis of unsuspected brain injury, thereby resulting in decreasing the morbidity and mortality associated with facial trauma.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Simulação por Computador , Ossos Faciais/lesões , Traumatismos Faciais/complicações , Modelos Biológicos , Análise de Elementos Finitos , Humanos
2.
Comput Methods Biomech Biomed Engin ; 18(9): 961-973, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24328395

RESUMO

This study employs both the traditional and the complex modal analyses of a detailed finite element model of human head-neck system to determine modal responses in terms of resonant frequencies and mode shapes. It compares both modal responses without ignoring mode shapes, and these results are reasonably in agreement with the literature. Increasing displacement contour loops within the brain in higher frequency modes probably exhibits the shearing and twisting modes of the brain. Additional and rarely reported modal responses such as 'mastication' mode of the mandible and flipping mode of nasal lateral cartilages are identified. This suggests a need for detailed modelling to identify all the additional frequencies of each individual part. Moreover, it is found that a damping factor of above 0.2 has amplifying effect in reducing higher frequency modes, while a diminishing effect in lowering peak biomechanical responses, indicating the importance of identifying the appropriate optimised damping factor.

3.
Int J Numer Method Biomed Eng ; 30(3): 397-415, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24574171

RESUMO

Head injury, being one of the main causes of death or permanent disability, continues to remain a major health problem with significant socioeconomic costs. Numerical simulations using the FEM offer a cost-effective method and alternative to experimental methods in the biomechanical studies of head injury. The present study aimed to develop two realistic subject-specific FEMs of the human head with detailed anatomical features from medical images (Model 1: without soft tissue and Model 2: with soft tissue and differentiation of white and gray matters) and to validate them against the intracranial pressure (ICP) and relative intracranial motion data of the three cadaver experimental tests. In general, both the simulated results were in reasonably good agreement with the experimental measured ICP and relative displacements, despite slight discrepancy in a few neutral density targets markers. Sensitivity analysis showed some variations in the brain's relative motion to the material properties or marker's location. The addition of soft tissue in Model 2 helped to damp out the oscillations of the model response. It was also found that, despite the fundamental anatomical differences between the two models, there existed little evident differences in the predicted ICP and relative displacements of the two models. This indicated that the advancements on the details of the extracranial features would not improve the model's predicting capabilities of brain injury.


Assuntos
Encéfalo , Traumatismos Craniocerebrais , Cabeça/fisiologia , Modelos Biológicos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Traumatismos Craniocerebrais/patologia , Traumatismos Craniocerebrais/fisiopatologia , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pressão Intracraniana , Imageamento por Ressonância Magnética , Movimento (Física) , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
4.
Appl Ergon ; 45(3): 807-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23891505

RESUMO

A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend.


Assuntos
Telefone Celular , Vibração , Telefone Celular/instrumentação , Telefone Celular/normas , Feminino , Humanos , Masculino , Sensação , Adulto Jovem
5.
Ultrasonics ; 53(5): 928-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23453389

RESUMO

The purpose of this research is to present a new design of standing-wave ultrasonic motor. This motor uses three piezoelectric actuating blocks which deform appropriately when powered up. The deformations of the blocks in ultrasonic range are internally amplified via the design of the motor by about 80 times and collectively yield an elliptical trajectory for the driving head of the motor. Finite Element Analysis using ANSYS was performed for both dynamic analysis and optimization of a prototype motor. The numerical results verified that at steady state, the motor can achieve vibrations in micro-meter level and the velocity can reach decimeter scale, satisfying the fast speed requirement as a positioning actuator.

6.
Eur J Cardiothorac Surg ; 43(4): 829-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22766960

RESUMO

OBJECTIVES: Cardiovascular diseases, such as atherosclerosis and aneurysm, are closely associated with haemodynamic factors that are governed by luminal geometry. The present work aimed to study the effect of geometrical variation of aging aortas on haemodynamics. METHODS: Six aged subjects with intricate geometrical features, such as bulging or twisted supra-aortic arteries, sharply curved arch and double-curved descending aorta, were chosen from our medical database. These six geometrically variant aortas were reconstructed and the pulsatile nature of the blood flow of these subject-specific aorta models investigated using computational fluid dynamics simulations. Realistic time-dependent boundary conditions are prescribed for various arteries of the aorta models. RESULTS: This study suggests that haemodynamics in the human aorta is highly dependent on geometrical features. The positioning and contouring of the supra-aortic arteries may be associated with the skewness of velocity profiles. The flow profiles in the aortic arch or bends are generally skewed towards the inner curvature wall and this skewness may give rise to the formation of secondary flow in the inner curvature wall of the distal arch. The degree of vorticity in the distal aortic arch is found to be related to the arch curvature. The helical nature of aortic haemodynamics is predominant in the systole phrase when it begins with a left-handed rotation and then vanishes in the ascending aorta, whereas a right-handed rotation persists in the distal aortic arch. Lower wall shear stress is also found in the ascending regions where secondary flow is present. CONCLUSIONS: The aorta with an irregular contour and large degree of curvature at its arch favours the development of the intra-aortic secondary flow that subsequently relates to the pathogenesis of atheroma. The present study identifies the general trend of haemodynamic behaviours associated with various local geometrical features. Combining the knowledge of the correlation between haemodynamics and the underlying risks in the development of cardiovascular diseases, our study hopes to provide a better understanding of the relationship between aortic morphology and developing pathobiology of cardiovascular diseases. As such, early medical planning as well as surgical interventions can be designed to retard or prevent the development of cardiovascular diseases.


Assuntos
Aorta/anatomia & histologia , Aorta/patologia , Hemodinâmica/fisiologia , Modelos Cardiovasculares , Idoso , Aortografia , Simulação por Computador , Bases de Dados Factuais , Humanos , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
7.
Water Environ Res ; 84(9): 744-52, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23012774

RESUMO

The effects of surface roughness and shear on the attachment of Oscillatoria sp. algal filaments onto SS314 stainless steel coupons were investigated. Average surface roughness was used to systematically characterize the surface condition. An annular biofilm reactor with a spinning inner cylinder was used to create a uniform shear flow over the coupons. As far as the authors are able to establish, these systematic methods have yet to be used in the study of microalgae deposition. It was postulated that increasing average surface roughness would lead to an increase in the amount of algae deposited, whereas an increase in shear would lead to a decrease in algae deposition and reduce the algae lengths by way of fragmentation. The results indicate that an increasing surface roughness would increase the amount of algal strands that might deposit on the coupons, whereas shear was found to have the effect of reducing the amount of algae that might attach on the coupons.


Assuntos
Aderência Bacteriana , Oscillatoria/fisiologia , Resistência ao Cisalhamento , Propriedades de Superfície
8.
Craniomaxillofac Trauma Reconstr ; 5(2): 75-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730421

RESUMO

Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.

9.
Anal Chem ; 80(19): 7347-53, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18767868

RESUMO

In the present paper we first present a derivation based on the time-dependent perturbation theory to develop the dynamical equations which can be applied to model the response of a droplet quartz crystal microbalance (QCM) in contact with a single viscoelastic media. Moreover, the no-slip boundary condition across the device-viscoelastic media interface has been relaxed in the present model by using the Ellis-Hayward slip length approach. The model is then used to illustrate the characteristic changes in the frequency and attenuation of the QCM with and without the boundary slippage due to the changes in viscoelasticity as the coated media varies from Newtonian liquid to solid. To complement the theory, experiments have been conducted with microliter droplets of aqueous glycerol solutions and silicone oils with a viscosity in the range of 50 approximately 10,000 cS. The results have confirmed the Newtonian characteristics of the glycerol solutions. In contrast, the acoustic properties of the silicones oils as reflected in the impedance analysis are different from the glycerol solutions. More importantly, it was found that for the silicone oils the frequency steadily increased for several hours and even exceeded the initial value of the unloaded crystal as reflected in the positive frequency shift. Collaborative effects of interfacial slippage and viscoelasticity have been introduced to qualitatively interpret the measured frequency up-shifts for the silicone oils. The present work shows the potential importance of the combined effects of viscoelasticity and interfacial slippage when using the droplet QCM to investigate the rheological behavior of more complex fluids.

10.
Langmuir ; 24(15): 8373-8, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18616226

RESUMO

In this Article, we report the application of the quartz crystal microbalance (QCM) to study the evaporation of colloidal suspension droplets. Droplets of alumina particle suspensions with varying particle size and solid concentration have been investigated. Characteristic responses of the resonance frequency of the QCM associated with the different evaporation stages have been established. Quantitative analysis of the experimental results has been performed by the proposed QCM models. An interesting finding is that frequency increase after complete drying has been observed in some cases. Interpretation of the frequency increase has been developed in terms of the contact stiffness. The possible physical mechanisms are also discussed and quantified in terms of various interparticle forces.

11.
Langmuir ; 23(13): 7392-7, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17500576

RESUMO

The frequency response of a quartz crystal microbalance (QCM) in contact with a spreading liquid drop is studied in this paper. An improved model describing the frequency change of the QCM with the shape evolution of the liquid drop with time is proposed based on hydrodynamic analysis, which has not been reported in the literature. It is found that the drop spreading shape, including the base radius and height, has a significant influence on the frequency response of the QCM, resulting in an unexpected increase in the resonant frequency of the QCM. The model shows that the combination of the knowledge about the radial sensitivity of the QCM and the dynamic spreading of the liquid drop is potentially important to optimize the interpretation of the experimental results. The predicted results are verified with experimental results obtained with silicone oil.

12.
Artigo em Inglês | MEDLINE | ID: mdl-12699152

RESUMO

A nondestructive quality evaluation and control procedure for large-area, (001)-cut PZN-8%PT wafers is described. The crystals were grown by the flux technique engineered to promote (001) layer growth of the crystals. The wafers were sliced parallel to the (001) layer growth plane. Curie temperature (Tc) variations, measured with matching arrays of dot electrodes (of 5.0 mm in center-to-center spacing), were found to be better than +/- 4.0 degrees C both within wafers and from wafer to wafer. After selective dicing to give final wafers of narrower Tc distributions (e.g., +/- 3.0 degrees C or better), the wafers were coated with complete electrodes and poled at room temperature at 0.7-0.9 kV/mm. Typical overall properties of the poled wafers were: K3T = 5,200 (+/- 10% from wafer to wafer), tan delta < 0.01 (all wafers), and kt = 0.55 (+/- 5%) (all percentage variations are in relative percentages). Then, the distributions of K3S, tan delta, and kt were measured by the array dot electrode technique. The variations in K3S (hence K3T) and kt within individual wafers were found to be within +/- 10% and +/- 5%, respectively. The dielectric loss values, measured at 1 kHz, were consistently low, being < 0.01 throughout the wafers. The kt values determined by the dot electrodes were found to be about 5% smaller than those obtained with the complete electrodes, which can be attributed to an increase in capacitance ratio due to the partial electroding. The k33 values, deduced using the relation K3S approximately (1 - k33(2))K3T, from the mean K3S and overall K3T values, average 0.94 (+/- 2%). The present work shows that the distribution of Tc within wafers can be used as a convenient check for the uniformity in composition and electromechanical properties of PZN-8%PT single crystal wafers. Our results show that, to control deltaK3T and deltakt within individual wafer to < or = 10% and 5%, respectively, the variation in Tc within the wafer should be kept within +/- 3.0 degrees C or better.


Assuntos
Cristalização/métodos , Cristalografia/métodos , Chumbo/química , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Nióbio/química , Titânio/química , Transdutores , Ultrassonografia/instrumentação , Zinco/química , Cristalografia/instrumentação , Condutividade Elétrica , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrodos , Controle de Qualidade , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...