Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 8(10)2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301261

RESUMO

The electrical characteristics and operation mechanism of a molybdenum disulfide/black phosphorus (MoS2/BP) heterojunction device are investigated herein. Even though this device showed a high on-off ratio of over 1 × 107, with a lower subthreshold swing of ~54 mV/dec and a 1fA level off current, its operating mechanism is closer to a junction field-effect transistor (FET) than a tunneling FET. The off-current of this device is governed by the depletion region in the BP layer, and the band-to-band tunneling current does not contribute to the rapid turn-on and extremely low off-current.

2.
ACS Appl Mater Interfaces ; 9(42): 37146-37153, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28976735

RESUMO

Molybdenum disulfide with atomic-scale flatness has application potential in high-speed and low-power logic devices owing to its scalability and intrinsic high mobility. However, to realize viable technologies based on two-dimensional materials, techniques that enable their large-area growth with high quality and uniformity on wafer cale is a prerequisite. Here, we provide a route toward highly uniform growth of a wafer-scale, four-layered MoS2 film on a 2 in. substrate via a sequential process consisting of the deposition of a molybdenum trioxide precursor film by sputtering followed by postsulfurization using a chemical vapor deposition process. Spatial spectroscopic analyses by Raman and PL mapping validated that the as-synthesized MoS2 thin films exhibit high uniformity on a 2 in. sapphire substrate. The highly uniform MoS2 layers allow a successful integration of devices based on ∼1200 MoS2 transistor arrays with a yield of 95% because of their extreme homogeneity on Si wafers. Moreover, a pulse electrical measurement technique enabled investigation of the inherent physical properties of the atomically thin MoS2 layers by minimizing the charge-trapping effect. Such a facile synthesis method can be possibly applied to other 2D transition metal dichalcogenides to ultimately realize the chip integration of device architectures with all 2D-layered building blocks.

3.
Sensors (Basel) ; 15(10): 24903-13, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404279

RESUMO

We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

4.
ACS Appl Mater Interfaces ; 7(30): 16775-80, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26161691

RESUMO

We report the production of a two-dimensional (2D) heterostructured gas sensor. The gas-sensing characteristics of exfoliated molybdenum disulfide (MoS2) connected to interdigitated metal electrodes were investigated. The MoS2 flake-based sensor detected a NO2 concentration as low as 1.2 ppm and exhibited excellent gas-sensing stability. Instead of metal electrodes, patterned graphene was used for charge collection in the MoS2-based sensing devices. An equation based on variable resistance terms was used to describe the sensing mechanism of the graphene/MoS2 device. Furthermore, the gas response characteristics of the heterostructured device on a flexible substrate were retained without serious performance degradation, even under mechanical deformation. This novel sensing structure based on a 2D heterostructure promises to provide a simple route to an essential sensing platform for wearable electronics.

5.
Sci Rep ; 4: 4886, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24811431

RESUMO

Defects of graphene are the most important concern for the successful applications of graphene since they affect device performance significantly. However, once the graphene is integrated in the device structures, the quality of graphene and surrounding environment could only be assessed using indirect information such as hysteresis, mobility and drive current. Here we develop a discharge current analysis method to measure the quality of graphene integrated in a field effect transistor structure by analyzing the discharge current and examine its validity using various device structures. The density of charging sites affecting the performance of graphene field effect transistor obtained using the discharge current analysis method was on the order of 10(14)/cm(2), which closely correlates with the intensity ratio of the D to G bands in Raman spectroscopy. The graphene FETs fabricated on poly(ethylene naphthalate) (PEN) are found to have a lower density of charging sites than those on SiO2/Si substrate, mainly due to reduced interfacial interaction between the graphene and the PEN. This method can be an indispensable means to improve the stability of devices using a graphene as it provides an accurate and quantitative way to define the quality of graphene after the device fabrication.

6.
Nanotechnology ; 24(47): 475501, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24177860

RESUMO

A new touch sensor device has been demonstrated with molybdenum disulfide (MoS2) field effect transistors stacked with a piezoelectric polymer, polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE). The performance of two device stack structures, metal/PVDF-TrFE/MoS2 (MPM) and metal/PVDF-TrFE/Al2O3/MoS2 (MPAM), were compared as a function of the thickness of PVDF-TrFE and Al2O3. The sensitivity of the touch sensor has been improved by two orders of magnitude by reducing the charge scattering and enhancing the passivation effects using a thin Al2O3 interfacial layer. Reliable switching behavior has been demonstrated up to 120 touch press cycles.

7.
Nanotechnology ; 24(11): 115707, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23455515

RESUMO

The benefits of multi-layer graphene (MLG) capping on Cu interconnects have been experimentally demonstrated. The resistance of MLG capped Cu wires improved by 2-7% compared to Cu wires. The breakdown current density increased by 18%, suggesting that the MLG can act as an excellent capping material for Cu interconnects, improving the reliability characteristics. With a proper process optimization, MLG capped Cu interconnects could become a promising technology for high density back end-of-line interconnects.

8.
Small ; 9(19): 3295-300, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23420782

RESUMO

A highly flexible and transparent transistor is developed based on an exfoliated MoS2 channel and CVD-grown graphene source/drain electrodes. Introducing the 2D nanomaterials provides a high mechanical flexibility, optical transmittance (∼74%), and current on/off ratio (>10(4)) with an average field effect mobility of ∼4.7 cm(2) V(-1) s(-1), all of which cannot be achieved by other transistors consisting of a MoS2 active channel/metal electrodes or graphene channel/graphene electrodes. In particular, a low Schottky barrier (∼22 meV) forms at the MoS2 /graphene interface, which is comparable to the MoS2 /metal interface. The high stability in electronic performance of the devices upon bending up to ±2.2 mm in compressive and tensile modes, and the ability to recover electrical properties after degradation upon annealing, reveal the efficacy of using 2D materials for creating highly flexible and transparent devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...