Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 21(1): 19, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123478

RESUMO

BACKGROUND: The recent CRISPR-Cas coupled with λ recombinase mediated genome recombineering has become a common laboratory practice to modify bacterial genomes. It requires supplying a template DNA with homology arms for precise genome editing. However, generation of homology arms is a time-consuming, costly and inefficient process that is often overlooked. RESULTS: In this study, we first optimized a CRISPR-Cas genome engineering protocol in the Escherichia coli (E. coli) BL21 strain and successfully deleted 10 kb of DNA from the genome in one round of editing. To further simplify the protocol, asymmetric homology arms were produced by PCR in a single step with two primers and then purified using a desalting column. Unlike conventional homology arms that are prepared through overlapping PCR, cloning into a plasmid or annealing synthetic DNA fragments, our method significantly both shortened the time taken and reduced the cost of homology arm preparation. To test the robustness of the optimized workflow, we successfully deleted 26 / 27 genes across the BL21 genome. Noteworthy, gRNA design is important for the CRISPR-Cas system and a general heuristic gRNA design has been proposed in this study. To apply our established protocol, we targeted 16 genes and iteratively deleted 7 genes from BL21 genome. The resulting strain increased lycopene yield by ~ threefold. CONCLUSIONS: Our work has optimized the homology arms design for gene deletion in BL21. The protocol efficiently edited BL21 to improve lycopene production. The same workflow is applicable to any E. coli strain in which genome engineering would be useful to further increase metabolite production.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Licopeno/metabolismo , Engenharia Metabólica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Edição de Genes , Genoma Bacteriano , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Recombinases/genética , Recombinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...