Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Healthc Eng ; 2022: 5905230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569180

RESUMO

Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail, including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Diagnóstico por Computador/métodos , Tórax , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
2.
Biology (Basel) ; 11(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336842

RESUMO

Neurological disorders (NDs) are becoming more common, posing a concern to pregnant women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms, each with its own set of origins, complications, and results. In recent years, the intricacy of brain functionalities has received a better understanding due to neuroimaging modalities, such as magnetic resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography (PET), etc. With high-performance computational tools and various machine learning (ML) and deep learning (DL) methods, these modalities have discovered exciting possibilities for identifying and diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology, leading to an overview of pre-processing and feature extraction techniques. The performance of existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article. A comprehensive portion of this study also shows various modalities and disease-specified datasets that detect and records images, signals, and speeches, etc. Limited related works are also summarized on NDs, as this domain has significantly fewer works focused on disease and detection criteria. Some of the standard evaluation metrics are also presented in this study for better result analysis and comparison. This research has also been outlined in a consistent workflow. At the conclusion, a mandatory discussion section has been included to elaborate on open research challenges and directions for future work in this emerging field.

3.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502636

RESUMO

Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Encéfalo , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...