Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Org Lett ; 26(22): 4594-4599, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38781175

RESUMO

Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates. A variety of chemical strategies have been used to capture E1-Ub-E2 and E2-Ub-E3 mimics, but these introduce modifications that disrupt atomic spacing at the linkage point relative to the native tetrahedral intermediate. We have developed a biselectrophilic PSAN warhead that can be installed in place of the conserved C-terminal glycine in Ub and used to form ternary protein complexes linked via cyanomethyldithioacetals that closely mimic the native tetrahedral intermediates. Investigation of the reactivity of the warhead and substituted analogues led to an effective semisynthetic route to Ub-1-PSAN, which was used to form a ternary E1-Ub*-E2 complex as a mimic of the transthioesterification intermediate.


Assuntos
Ubiquitina , Esterificação , Ubiquitina/química , Ubiquitina/síntese química , Estrutura Molecular , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química
2.
Proc Natl Acad Sci U S A ; 120(1): e2213703120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574706

RESUMO

The Ufd1/Npl4/Cdc48 complex is a universal protein segregase that plays key roles in eukaryotic cellular processes. Its functions orchestrating the clearance or removal of polyubiquitylated targets are established; however, prior studies suggest that the complex also targets substrates modified by the ubiquitin-like protein SUMO. Here, we show that interactions between Ufd1 and SUMO enhance unfolding of substrates modified by SUMO-polyubiquitin hybrid chains by the budding yeast Ufd1/Npl4/Cdc48 complex compared to substrates modified by polyubiquitin chains, a difference that is accentuated when the complex has a choice between these substrates. Incubating Ufd1/Npl4/Cdc48 with a substrate modified by a SUMO-polyubiquitin hybrid chain produced a series of single-particle cryo-EM structures that reveal features of interactions between Ufd1/Npl4/Cdc48 and ubiquitin prior to and during unfolding of ubiquitin. These results are consistent with cellular functions for SUMO and ubiquitin modifications and support a physical model wherein Ufd1/Npl4/Cdc48, SUMO, and ubiquitin conjugation pathways converge to promote clearance of proteins modified with SUMO and polyubiquitin.


Assuntos
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Ubiquitina/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Methods Enzymol ; 673: 453-473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965016

RESUMO

The nuclear RNA exosome collaborates with the MTR4 helicase and RNA adaptor complexes to process, surveil, and degrade RNA. Here we outline methods to characterize RNA translocation and strand displacement by exosome-associated helicases and adaptor complexes using fluorescence-based strand displacement assays. The design and preparation of substrates suitable for analysis of helicase and decay activities of reconstituted MTR4-exosome complexes are described. To aid structural and biophysical studies, we present strategies for engineering substrates that can stall helicases during translocation, providing a means to capture snapshots of interactions and molecular steps involved in substrate translocation and delivery to the exosome.


Assuntos
Exossomos , Proteínas de Saccharomyces cerevisiae , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Humanos , Oligonucleotídeos/metabolismo , RNA/metabolismo , RNA Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell ; 185(12): 2132-2147.e26, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688134

RESUMO

RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.


Assuntos
Exossomos , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA/metabolismo , Estabilidade de RNA
5.
Genes Dev ; 36(3-4): 180-194, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058317

RESUMO

Mechanisms regulating meiotic progression in mammals are poorly understood. The N6-methyladenosine (m6A) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m6A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m6A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3' UTRs and coding sequences, distinct from the sites that contain m6A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m6A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.


Assuntos
Meiose , RNA Helicases , Animais , Regulação da Expressão Gênica , Masculino , Mamíferos/genética , Meiose/genética , Camundongos , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/genética
6.
EMBO J ; 40(22): e103787, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34585421

RESUMO

Repair of DNA double-stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post-translational modification of repair factors. In budding yeast, single-stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA-RPA complexes are then SUMO-modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3' single-stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO-RPA signal is amplified by successive rounds of Siz2-dependent SUMO modification of RPA and dissociation of SUMO-RPA at the junction between single- and double-stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.


Assuntos
Ácidos Nucleicos Heteroduplexes/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Mutação , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Domínios Proteicos , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/química
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782132

RESUMO

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Poliadenilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
8.
ACS Infect Dis ; 7(2): 435-444, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33527832

RESUMO

Tuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice. Sulfonamide analogs were previously identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase in vitro but lacked activity against whole mycobacteria. Here we present the development of analogs with improved permeability, potency, and selectivity, which inhibit the growth of Mycobacterium tuberculosis in axenic culture on carbohydrates and within mouse primary macrophages. They increase intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria. Distinct modalities of binding between the mycobacterial and human enzymes contribute to improved potency and hence selectivity through induced-fit tight binding interactions within the mycobacterial but not human enzyme, as indicated by kinetic analysis and crystallography.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos/uso terapêutico , Di-Hidrolipoamida Desidrogenase/metabolismo , Humanos , Cinética , Camundongos , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico
9.
Curr Opin Struct Biol ; 67: 86-94, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147539

RESUMO

The RNA exosome is a conserved complex of proteins that mediates 3'-5' RNA processing and decay. Its functions range from processing of non-coding RNAs such as ribosomal RNAs and decay of aberrant transcripts in the nucleus to cytoplasmic mRNA turnover and quality control. Ski2-like RNA helicases translocate substrates to exosome-associated ribonucleases and interact with the RNA exosome either directly or as part of multi-subunit helicase-containing complexes that identify and target RNA substrates for decay. Recent structures of these helicases with their RNA-binding partners or the RNA exosome have advanced our understanding of a system of modular and mutually exclusive contacts between the exosome and exosome-associated helicase complexes that shape the transcriptome by orchestrating exosome-dependent 3'-5' decay.


Assuntos
Exossomos , RNA Helicases , Proteínas de Saccharomyces cerevisiae , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Humanos , RNA/genética , RNA Helicases/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Methods Mol Biol ; 2062: 417-425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768988

RESUMO

The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes. Here, we present an overview of our approach to purify exosome components from recombinant sources and reconstitute them into functional complexes. Three chapters following this overview provide detailed protocols for reconstituting exosome complexes from S. cerevisiae, S. pombe, and H. sapiens. We additionally provide insight on some of the drawbacks of these methods and highlight several important discoveries that have been achieved using reconstituted complexes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Fúngico/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Exorribonucleases/metabolismo , Humanos , Estabilidade de RNA/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Methods Mol Biol ; 2062: 427-448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768989

RESUMO

3' to 5' RNA degradation is primarily catalyzed by the RNA exosome subunits Dis3 and Rrp6 in the nucleus of Saccharomyces cerevisiae. These enzymes form a complex with the nine-subunit noncatalytic core (Exo9) to carry out their functions in vivo. Protein cofactors Rrp47, Mpp6, and the Mtr4 RNA helicase also assist the complex by modulating its activities and/or recruiting it to specific RNAs for processing or degradation. Here we present our preferred strategy for reconstituting RNA exosomes from S. cerevisiae using purified, recombinantly expressed components.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo
12.
Methods Mol Biol ; 2062: 449-465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768990

RESUMO

In this chapter, we describe methods to clone, express, purify, and reconstitute active S. pombe RNA exosomes. Reconstitution procedures are similar to methods that have been successful for the human and budding yeast exosome systems using protein subunits purified from the recombinant host E. coli. By applying these strategies, we can successfully reconstitute the S. pombe noncatalytic exosome core as well as complexes that contain the exoribonucleases Dis3 and Rrp6, cofactors Cti1 (equivalent to budding yeast Rrp47) and Mpp6 as well as the RNA helicase Mtr4.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Fúngico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Escherichia coli/metabolismo , Exorribonucleases/metabolismo , Estabilidade de RNA/fisiologia
13.
Methods Mol Biol ; 2062: 467-489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768991

RESUMO

We describe procedures to clone, express, and reconstitute an active human nuclear RNA exosome. Individual recombinant subunits are expressed from E. coli and successfully reconstituted into the nuclear complex, which contains the noncatalytic nine-subunit exosome core, the endoribonuclease and exoribonuclease DIS3, the distributive exoribonuclease EXOSC10, the cofactors C1D and MPP6, and the RNA helicase MTR4.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Nuclear/metabolismo , RNA/metabolismo , Núcleo Celular/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Exorribonucleases/metabolismo , Humanos , Subunidades Proteicas/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(2): 982-992, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879344

RESUMO

The exoribonuclease Rrp6p is critical for RNA decay in the nucleus. While Rrp6p acts on a large range of diverse substrates, it does not indiscriminately degrade all RNAs. How Rrp6p accomplishes this task is not understood. Here, we measure Rrp6p-RNA binding and degradation kinetics in vitro at single-nucleotide resolution and find an intrinsic substrate selectivity that enables Rrp6p to discriminate against specific RNAs. RNA length and the four 3'-terminal nucleotides contribute most to substrate selectivity and collectively enable Rrp6p to discriminate between different RNAs by several orders of magnitude. The most pronounced discrimination is seen against RNAs ending with CCA-3'. These RNAs correspond to 3' termini of uncharged tRNAs, which are not targeted by Rrp6p in cells. The data show that in contrast to many other proteins that use substrate selectivity to preferentially interact with specific RNAs, Rrp6p utilizes its selectivity to discriminate against specific RNAs. This ability allows Rrp6p to target diverse substrates while avoiding a subset of RNAs.


Assuntos
Exorribonucleases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Escherichia coli , Exorribonucleases/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Cinética , RNA/química , RNA de Transferência/metabolismo , Especificidade por Substrato
15.
Cell ; 179(1): 282-282.e1, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539497

RESUMO

The RNA exosome is a 3' to 5' ribonuclease that plays a fundamental role in maturation, quality control, and turnover of nearly all types of RNA produced in eukaryotic cells. Here, we present an overview of the structure, composition, and functions of the RNA exosome, including various cytoplasmic and nuclear exosome co-factors and associated protein complexes. To view this SnapShot, open or download the PDF.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , RNA Helicases/metabolismo , Estabilidade de RNA
16.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 8): 552-560, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397327

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S. cerevisiae, and structures of E2-E2BR complexes from both species have been determined. In addition to sequence and structural differences between the human and S. cerevisiae E2BRs, the binding of E2BRs also elicits different biochemical outcomes with respect to E2 charging by E1 and E2 discharge. Here, the Schizosaccharomyces pombe E2BR was identified and purified with Ubc7 to resolve a 1.7 Šresolution co-crystal structure of the E2BR in complex with Ubc7. The S. pombe E2BR binds to the back side of the E2 as an α-helix and, while differences exist, it exhibits greater similarity to the human E2BR. Structure-based sequence alignments reveal differences and conserved elements among these species. Structural comparisons and biochemistry reveal that the S. pombe E2BR presents a steric impediment to E1 binding and inhibits E1-mediated charging, respectively.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Retículo Endoplasmático/metabolismo , Modelos Moleculares , Conformação Proteica , Ubiquitina/química
17.
Proc Natl Acad Sci U S A ; 116(31): 15475-15484, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31235585

RESUMO

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures of Schizosaccharomyces pombe Ub E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.


Assuntos
Adenina/química , Ésteres/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Compostos de Sulfidrila/química , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Domínio Catalítico , Sequência Conservada , Análise Mutacional de DNA , Difosfatos/metabolismo , Conformação Proteica , Ubiquitina/metabolismo
18.
Methods Mol Biol ; 1844: 169-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242710

RESUMO

Most cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase. One major class of E3, with ca. 600 members, harbors RING or the RING-like SP-RING or Ubox domains. These RING/RING-like domains bind and activate the E2-Ubl thioester by stabilizing a conformation that is optimal for nucleophilic attack by the side chain residue (typically lysine) on the substrate. These RING/RING-like domains typically function together with other domains or protein complexes that often serve to recruit particular substrates. How these RING/RING-like E3 domains function to activate the E2-Ubl thioester while engaged with substrate remains poorly understood. We describe a strategy to generate and purify a unique E2Ubc9-UblSUMO thioester mimetic that can be cross-linked to the SubstratePCNA at Lys164, a conjugation site that is only observed in the presence of E3Siz1. We describe two techniques to cross-link the E2Ubc9-UblSUMO thioester mimetic active site to the site of modification on PCNA and the subsequent purification of these complexes. Finally, we describe the reconstitution and purification of the E2Ubc9-UblSUMO-PCNA complex with the E3Siz1 and purification that enabled its crystallization and structure determination. We think this technique can be extended to other E2-Ubl-substrate/E3 complexes to better probe the function and specificity of RING-based E3 Ubl ligases.


Assuntos
Complexos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Substituição de Aminoácidos , Expressão Gênica , Mutação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina , Ubiquitinação
19.
J Biol Chem ; 293(34): 13224-13233, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29976752

RESUMO

Small ubiquitin-like modifier (SUMO) is commonly used as a protein fusion domain to facilitate expression and purification of recombinant proteins, and a SUMO-specific protease is then used to remove SUMO from these proteins. Although this protease is highly specific, its limited solubility and stability hamper its utility as an in vitro reagent. Here, we report improved SUMO protease enzymes obtained via two approaches. First, we developed a computational method and used it to re-engineer WT Ulp1 from Saccharomyces cerevisiae to improve protein solubility. Second, we discovered an improved SUMO protease via genomic mining of the thermophilic fungus Chaetomium thermophilum, as proteins from thermophilic organisms are commonly employed as reagent enzymes. Following expression in Escherichia coli, we found that these re-engineered enzymes can be more thermostable and up to 12 times more soluble, all while retaining WT-or-better levels of SUMO protease activity. The computational method we developed to design solubility-enhancing substitutions is based on the RosettaScripts application for the macromolecular modeling suite Rosetta, and it is broadly applicable for the improvement of solution properties of other proteins. Moreover, we determined the X-ray crystal structure of a SUMO protease from C. thermophilum to 1.44 Å resolution. This structure revealed that this enzyme exhibits structural and functional conservation with the S. cerevisiae SUMO protease, despite exhibiting only 28% sequence identity. In summary, by re-engineering the Ulp1 protease and discovering a SUMO protease from C. thermophilum, we have obtained proteases that are more soluble, more thermostable, and more efficient than the current commercially available Ulp1 enzyme.


Assuntos
Chaetomium/enzimologia , Cisteína Endopeptidases/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Estabilidade Enzimática , Mutação , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Temperatura
20.
Cell ; 173(7): 1663-1677.e21, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906447

RESUMO

The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.


Assuntos
DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Helicases/metabolismo , RNA/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , Exorribonucleases/química , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Humanos , Processamento de Imagem Assistida por Computador , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , RNA/genética , RNA Helicases/química , Estabilidade de RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...