Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17926, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784616

RESUMO

Dengue is an important arboviral infection, causing a broad range symptom that varies from life-threatening mild illness to severe clinical manifestations. Recent studies reported the impairment of the central nervous system (CNS) after dengue infection, a characteristic previously considered as atypical and underreported. However, little is known about the neuropathology associated to dengue. Since animal models are important tools for helping to understand the dengue pathogenesis, including neurological damages, the aim of this work was to investigate the effects of intracerebral inoculation of a neuroadapted dengue serotype 2 virus (DENV2) in immunocompetent BALB/c mice, mimicking some aspects of the viral encephalitis. Mice presented neurological morbidity after the 7th day post infection. At the same time, histopathological analysis revealed that DENV2 led to damages in the CNS, such as hemorrhage, reactive gliosis, hyperplastic and hypertrophied microglia, astrocyte proliferation, Purkinje neurons retraction and cellular infiltration around vessels in the pia mater and in neuropil. Viral tropism and replication were detected in resident cells of the brain and cerebellum, such as neurons, astrocyte, microglia and oligodendrocytes. Results suggest that this classical mice model might be useful for analyzing the neurotropic effect of DENV with similarities to what occurs in human.


Assuntos
Encéfalo/virologia , Vírus da Dengue/patogenicidade , Dengue/patologia , Encefalite por Arbovirus/patologia , Gliose/patologia , Replicação Viral , Animais , Encéfalo/patologia , Células Cultivadas , Dengue/virologia , Vírus da Dengue/fisiologia , Encefalite por Arbovirus/virologia , Gliose/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/patologia , Microglia/virologia , Células de Purkinje/patologia , Células de Purkinje/virologia
2.
Biochim Biophys Acta Rev Cancer ; 1868(1): 333-340, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554667

RESUMO

Glioblastoma, the most aggressive and fatal type of brain tumor, is capable of interacting with brain immune cells such as microglia, which contributes to the growth of these tumors. Various molecules, including growth factors and cytokines, have been identified as regulators of microglia-glioblastoma interaction. Recent studies suggest that the Wnt family of lipoglycoproteins plays an important role, not only in biological events during development, but also in cancer progression, and can be part of microglia recruitment to glioblastoma as well as of tumor growth and invasion. Here, we discuss recent interesting findings that support a role for Wnt signaling pathways in the microglia-glioblastoma crosstalk.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microglia/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Neoplasias Encefálicas/patologia , Citocinas/metabolismo , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/patologia
3.
J Neuroendocrinol ; 27(6): 435-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855519

RESUMO

Thyroid hormones (THs) play key roles in brain development and function. The lack of THs during childhood is associated with the impairment of several neuronal connections, cognitive deficits and mental disorders. Several lines of evidence point to astrocytes as TH targets and as mediators of TH action in the central nervous system; however, the mechanisms underlying these events are still not completely known. In this review, we focus on advances in our understanding of the effects of THs on astroglial cells and the impact of these effects on neurone-astrocyte interactions. First, we discuss the signalling pathways involved in TH metabolism and the molecular mechanisms underlying TH receptor function. Then, we discuss data related to the effects of THs on astroglial cells, as well as studies regarding the generation of mutant TH receptor transgenic mice that have contributed to our understanding of TH function in brain development. We argue that astrocytes are key mediators of hormone actions on development of the cerebral cortex and cerebellum and that the identification of the molecules and pathways involved in these events might be important for determining the molecular-level basis of the neural deficits associated with endocrine diseases.


Assuntos
Astrócitos/fisiologia , Sistema Endócrino/fisiologia , Hormônios Tireóideos/fisiologia , Humanos
4.
Oncogenesis ; 3: e123, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25329722

RESUMO

The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53(+/-) astrocytes is richer in laminin and fibronectin, compared with ECM from p53(+/+) astrocytes. In addition, ECM from p53(+/-) astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53(+/-) microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53(+/+) astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance.

5.
Cell Death Dis ; 4: e789, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24008733

RESUMO

Oculoleptomeningeal amyloidosis (OA) is a fatal and untreatable hereditary disease characterized by the accumulation of transthyretin (TTR) amyloid within the central nervous system. The mechanisms underlying the pathogenesis of OA, and in particular how amyloid triggers neuronal damage, are still unknown. Here, we show that amyloid fibrils formed by a mutant form of TTR, A25T, activate microglia, leading to the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nitric oxide. Further, we found that A25T amyloid fibrils induce the activation of Akt, culminating in the translocation of NFκB to the nucleus of microglia. While A25T fibrils were not directly toxic to neurons, the exposure of neuronal cultures to media conditioned by fibril-activated microglia caused synapse loss that culminated in extensive neuronal death via apoptosis. Finally, intracerebroventricular (i.c.v.) injection of A25T fibrils caused microgliosis, increased brain TNF-α and IL-6 levels and cognitive deficits in mice, which could be prevented by minocycline treatment. These results indicate that A25T fibrils act as pro-inflammatory agents in OA, activating microglia and causing neuronal damage.


Assuntos
Neuropatias Amiloides Familiares/patologia , Transtornos da Memória/patologia , Memória de Curto Prazo , Microglia/patologia , Pré-Albumina/metabolismo , Sinapses/metabolismo , Amiloide , Neuropatias Amiloides Familiares/complicações , Neuropatias Amiloides Familiares/fisiopatologia , Animais , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Endocitose , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Minociclina/farmacologia , Mutação/genética , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinapses/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Neuroscience ; 200: 130-41, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22062133

RESUMO

Microglial activation is a key event in the progression and infiltration of tumors. We have previously demonstrated that the co-chaperone stress inducible protein 1 (STI1), a cellular prion protein (PrP(C)) ligand, promotes glioblastoma (GBM) proliferation. In the present study, we examined the influence of microglial STI1 in the growth and invasion of the human glioblastoma cell line GBM95. We demonstrated that soluble factors secreted by microglia into the culture medium (microglia conditioned medium; MG CM) caused a two-fold increase in the proliferation of GBM95 cells. This effect was reversed when STI1 was removed from the MG CM. In this context, we have shown that microglial cells synthesize and secrete STI1. Interestingly, no difference was observed in proliferation rates when GBM cells were maintained in MG CM or MG CM containing an anti-PrP(C) neutralizing antibody. Moreover, rec STI1 and rec STI1(Δ230-245), which lack the PrP(C) binding site, both promoted similar levels of GBM95 proliferation. In the migration assays, MG CM favored the migration of GBM95 cells, but migration failed when STI1 was removed from the MG CM. We detected metalloproteinase 9 (MMP-9) activity in the MG CM, and when cultured microglia were treated with an anti-STI1 antibody, MMP-9 activity decreased. Our results suggest that STI1 is secreted by microglia and favors tumor growth and invasion through the participation of MMP-9 in a PrP(C)-independent manner.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Proteínas de Choque Térmico/farmacologia , Microglia/química , Proteínas PrPC/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/química , Camundongos , Camundongos Knockout , Neurônios/química , Proteínas PrPC/deficiência , Timidina/metabolismo , Fatores de Tempo , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...