Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 167(3): 1003-1005, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35147804

RESUMO

A novel bipartite begomovirus infecting Cnidoscolus urens (Euphorbiaceae) from Pernambuco State, Brazil, has been characterized. The complete DNA-A (2657 nt) and DNA-B (2622 nt) components of the viral isolates show the typical genome organization of New World bipartite begomoviruses. DNA-A of the isolates had the highest percentage of nucleotide sequence identity (88.6-88.9%) to cnidoscolus mosaic leaf deformation virus. Based on the current classification criteria for the genus Begomovirus, the virus infecting C. urens should be considered a new member of the genus, and the name "cnidoscolus mild mosaic virus" is proposed for the virus, and the name "Begomovirus caboniensis" is proposed for its species.


Assuntos
Begomovirus , Euphorbiaceae , Vírus do Mosaico , Doenças das Plantas/virologia , Begomovirus/classificação , Brasil , DNA Viral/genética , Euphorbiaceae/virologia , Genoma Viral , Vírus do Mosaico/classificação , Filogenia , Análise de Sequência de DNA
2.
Front Genet ; 12: 727314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630521

RESUMO

Allopolyploidy is widely present across plant lineages. Though estimating the correct phylogenetic relationships and origin of allopolyploids may sometimes become a hard task. In the genus Stylosanthes Sw. (Leguminosae), an important legume crop, allopolyploidy is a key speciation force. This makes difficult adequate species recognition and breeding efforts on the genus. Based on comparative analysis of nine high-throughput sequencing (HTS) samples, including three allopolyploids (S. capitata Vogel cv. "Campo Grande," S. capitata "RS024" and S. scabra Vogel) and six diploids (S. hamata Taub, S. viscosa (L.) Sw., S. macrocephala M. B. Ferreira and Sousa Costa, S. guianensis (Aubl.) Sw., S. pilosa M. B. Ferreira and Sousa Costa and S. seabrana B. L. Maass & 't Mannetje) we provide a working pipeline to identify organelle and nuclear genome signatures that allowed us to trace the origin and parental genome recognition of allopolyploids. First, organelle genomes were de novo assembled and used to identify maternal genome donors by alignment-based phylogenies and synteny analysis. Second, nuclear-derived reads were subjected to repetitive DNA identification with RepeatExplorer2. Identified repeats were compared based on abundance and presence on diploids in relation to allopolyploids by comparative repeat analysis. Third, reads were extracted and grouped based on the following groups: chloroplast, mitochondrial, satellite DNA, ribosomal DNA, repeat clustered- and total genomic reads. These sets of reads were then subjected to alignment and assembly free phylogenetic analyses and were compared to classical alignment-based phylogenetic methods. Comparative analysis of shared and unique satellite repeats also allowed the tracing of allopolyploid origin in Stylosanthes, especially those with high abundance such as the StyloSat1 in the Scabra complex. This satellite was in situ mapped in the proximal region of the chromosomes and made it possible to identify its previously proposed parents. Hence, with simple genome skimming data we were able to provide evidence for the recognition of parental genomes and understand genome evolution of two Stylosanthes allopolyploids.

3.
Arch Virol ; 166(12): 3289-3299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34554304

RESUMO

Begomoviruses have circular, single-stranded DNA genomes encapsidated into twinned quasi-icosahedral particles and are transmitted by whiteflies of the Bemisia tabaci sibling group. Begomoviruses infect cultivated and non-cultivated plants, causing great losses in economically important crops worldwide. To better understand the genetic diversity of begomoviruses infecting the non-cultivated host Cnidoscolus urens, leaf samples exhibiting virus-like symptoms were collected in different localities in the state of Alagoas, Brazil, during 2015 and 2016. Forty-two complete DNA-A sequences were cloned and sequenced by the Sanger method. Based on nucleotide sequence comparisons, the 42 new isolates were identified as the bipartite begomovirus cnidoscolus mosaic leaf deformation virus (CnMLDV). The CnMLDV isolates were clustered in two phylogenetic groups (clusters I and II) corresponding to their sampling areas, and the high value of Wright's F fixation index observed for the DNA-A sequences suggests population structuring. At least seven independent intraspecies recombination events were predicted among CnMLDV isolates, with recombination breakpoints located in the common region (CR) and in the CP and Rep genes. Also, a high per site nucleotide diversity (π) was observed for CnMLDV isolates, with CP being significantly more variable than Rep. Despite the high genetic variability, strong negative or purifying selection was identified as the main selective force acting upon CP and Rep.


Assuntos
Begomovirus , Begomovirus/genética , Genoma Viral , Filogenia , Doenças das Plantas , Folhas de Planta
4.
Mol Ecol ; 30(15): 3747-3767, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021651

RESUMO

Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.


Assuntos
Begomovirus , Sequência de Bases , Begomovirus/genética , DNA Viral/genética , Evolução Molecular , Genoma Viral/genética , Filogenia , Doenças das Plantas
5.
Arch Virol ; 161(9): 2605-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27278930

RESUMO

Begomoviruses have been detected infecting the weed Cnidoscolus urens (family Euphorbiaceae) since 2004, but the viral species to which these viruses belonged was not known. Here, we report for the first time the complete genome sequence of a bipartite begomovirus obtained from C. urens collected in the state of Alagoas, Brazil. This isolate met the criteria to be classified as a member of a new begomovirus species, and the tentative name cnidoscolus mosaic leaf deformation virus (CnMLDV) is proposed. Pairwise sequence comparisons and phylogenetic analysis showed that the DNA-A genomic component of CnMLDV is most closely related to that of passionfruit severe leaf distortion virus, with 86.3 % nucleotide sequence identity.


Assuntos
Begomovirus/genética , Begomovirus/isolamento & purificação , Euphorbiaceae/virologia , Doenças das Plantas/virologia , Brasil , DNA Viral/genética , Genoma Viral , Filogenia , Folhas de Planta/virologia
6.
Arch Virol ; 161(6): 1735-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27020569

RESUMO

Begomoviruses are single-strand DNA plant viruses that infect economically important crops worldwide, exhibiting high genetic variability and species diversity. Based on the current taxonomic criteria established for the genus Begomovirus, a new member of this genus infecting a malvaceous weed is reported here. The name triumfetta yellow mosaic virus is proposed. At least one recombination event was detected in this new begomovirus, with putative parents being begomoviruses from tomato and Centrosema.


Assuntos
Begomovirus/genética , Malvaceae/virologia , Doenças das Plantas/virologia , Begomovirus/classificação , Begomovirus/isolamento & purificação , Brasil , DNA Viral/genética , Genoma Viral , Filogenia , Recombinação Genética
7.
Arch Virol ; 156(12): 2205-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006043

RESUMO

Diseases caused by begomoviruses are a serious constraint to crop production in many tropical and subtropical areas of the world, including Brazil. Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that are often associated with weed plants, which may act as natural reservoirs of viruses that cause epidemics in crop plants. Cleome affinis (family Capparaceae) is an annual weed that is frequently associated with leguminous crops in Brazil. Samples of C. affinis were collected in four states in the northeast of Brazil. Analysis of 14 full-length DNA-A components revealed that only one begomovirus was present, with 91-96% identity to cleome leaf crumple virus (ClLCrV). In a phylogenetic tree, ClLCrV forms a basal group relative to all other Brazilian begomoviruses. Evidence of multiple recombination events was detected among the ClLCrV isolates, which also display a high degree of genetic variability. Despite ClLCrV being the only begomovirus found, its phylogenetic placement, high genetic variability and recombinant nature suggest that C. affinis may act as a source of novel viruses for crop plants. Alternatively, ClLCrV could be a genetically isolated begomovirus. Further studies on the biological properties of ClLCrV should help to clarify the role of C. affinis in the epidemiological scenario of Brazilian begomoviruses.


Assuntos
Begomovirus/genética , Cleome/virologia , Animais , Begomovirus/patogenicidade , Brasil , Cleome/classificação , DNA Viral/genética , Variação Genética , Hemípteros/virologia , Insetos Vetores/virologia , Filogenia , Doenças das Plantas/virologia , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...