Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 11(1): 2024, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332780

RESUMO

Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity.


Assuntos
Clusterina/metabolismo , Glucose/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Síndrome do Ovário Policístico/metabolismo , Adulto , Animais , Linhagem Celular , Clusterina/sangue , Clusterina/genética , Modelos Animais de Doenças , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Fígado/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/tratamento farmacológico , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-27107853

RESUMO

A liquid chromatography tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM) in a triple-quadrupole scan mode was developed and comprehensively validated for the determination of [6,6-(2)H2]glucose and [U-(13)C6]glucose enrichments from dried blood spots (DBS) without prior derivatization. The method is demonstrated with dried blood spots obtained from rats administered with a primed-constant infusion of [U-(13)C6]glucose and an oral glucose load enriched with [6,6-(2)H2]glucose. The sensitivity is sufficient for analysis of the equivalent to <5µL of blood and the overall method was accurate and precise for the determination of DBS isotopic enrichments.


Assuntos
Glicemia/análise , Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/farmacocinética , Glucose/administração & dosagem , Glucose/farmacocinética , Limite de Detecção , Modelos Lineares , Ratos , Reprodutibilidade dos Testes
4.
Food Chem Toxicol ; 90: 181-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26911551

RESUMO

The popular edible seaweed, Gelidium amansii is broadly used as food worldwide. To determine whether G. amansii extract (GAE) has protective effects on obesity, mice fed a high-fat diet (HFD) treated with GAE (1 and 3 %) were studied. After 12 weeks of GAE treatment, body weight was greatly decreased in mice fed a high-fat diet. This effect could be due to decreased adipogenesis, as evidenced by the fact that GAE suppressed adipogenic gene expression in adipocytes. In addition, blood glucose and serum insulin levels were reduced by GAE treatment in mice fed a high-fat diet, suggesting improvement in glucose metabolism. GAE supplementation also led to a significant decrease in total cholesterol and triglyceride levels. These data are further confirmed by H&E staining. Our findings indicate that Gelidium amansii prevents against the development of diet-induced obesity, and further implicate that GAE supplementation could be the therapeutical option for treatment of metabolic disorder such as obesity.


Assuntos
Gorduras na Dieta/efeitos adversos , Obesidade/induzido quimicamente , Alga Marinha , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Sobrevivência Celular , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle
5.
Ultrason Sonochem ; 21(4): 1578-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24556321

RESUMO

A bio-guided optimization of the extraction of bioactive components from Annona glabra leaves has been developed using the etiolated wheat coleoptile bioassay as the control method. The optimization of an ultrasound-assisted extraction of bioactive compounds using allelopathy results as target values has been carried out for the first time. A two-level fractional factorial experimental design was applied to optimize the ultrasound-assisted extraction. The solvent was the extraction variable that had the most marked effect on the resulting bioactivity of the extracts in the etiolated wheat coleoptile bioassay. Extraction time, extraction temperature and the size of the ultrasonic probe also influenced the bioactivity of the extracts. A larger scale extraction was carried out in the next step in the allelopathic study, i.e., the isolation of compounds from the bioactive extract and chemical characterization by spectroscopic techniques, including NMR. Eight compounds were isolated and identified from the active extracts, namely two steroids (ß-sistosterol and stigmasterol), five diterpenes with the kaurane skeleton (ent-kaur-16-en-19-oic acid, ent-19-methoxy-19-oxokauran-17-oic acid, annoglabasin B, ent-17-hydroxykaur-15-en-19-oic acid and ent-15ß,16ß-epoxy-17-hydroxy-kauran-19-oic acid) and the acetogenin asimicin. The most active compound was annoglabasin B, which showed inhibition with values of -95% at 10(-3) M, -87% at 5×10(-4) M and greater than -70% at 10(-4) M in the etiolated wheat coleoptile bioassay.


Assuntos
Annona/química , Bioensaio , Fracionamento Químico/métodos , Cotilédone/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Triticum/efeitos dos fármacos , Ultrassom/métodos , Alelopatia , Cotilédone/crescimento & desenvolvimento , Estiolamento , Extratos Vegetais/farmacologia , Triticum/crescimento & desenvolvimento
6.
Am J Physiol Endocrinol Metab ; 306(3): E332-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24326423

RESUMO

Rho kinase (ROCK) isoforms regulate insulin signaling and glucose metabolism negatively or positively in cultured cell lines and skeletal muscle. However, the in vivo function of the ROCK1 isoform in adipose tissue has not been addressed. To determine the specific role of the adipose ROCK1 isoform in the development of insulin resistance and obesity, mice lacking ROCK1 in adipose tissue globally or selectively were studied. Here, we show that insulin's ability to activate IRS-1/PI3K/Akt signaling was greatly enhanced in adipose tissue of ROCK1(-/-) mice compared with wild-type mice. These effects resulted from the inhibitory effect of ROCK1 on insulin receptor action, as evidenced by the fact that IR tyrosine phosphorylation was abolished in ROCK1(-/-) MEF cells when ROCK1 was reexpressed. Consistently, adipose-specific disruption of ROCK1 increased IR tyrosine phosphorylation in adipose tissue and modestly improved sensitivity to insulin in obese mice induced by high-fat feeding. This effect is independent of any changes in adiposity, number or size of adipocytes, and metabolic parameters, including glucose, insulin, leptin, and triglyceride levels, demonstrating a minimal effect of adipose ROCK1 on whole body metabolism. Enzymatic activity of ROCK1 in adipose tissue remained ∼50%, which likely originated from the fraction of stromal vascular cells, suggesting involvement of these cells for adipose metabolic regulation. Moreover, ROCK isoform activities were increased in adipose tissue of diet-induced or genetically obese mice. These data suggest that adipose ROCK1 isoform plays an inhibtory role for the regulation of insulin sensitivity in diet-induced obesity in vivo.


Assuntos
Dieta/efeitos adversos , Deleção de Genes , Resistência à Insulina/genética , Quinases Associadas a rho/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Feminino , Isoenzimas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Especificidade de Órgãos/genética
7.
Rev Endocr Metab Disord ; 15(1): 67-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24174131

RESUMO

Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one's feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism.


Assuntos
Glicemia/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Período Pós-Prandial/fisiologia , Nervo Vago/metabolismo , Animais , Intolerância à Glucose/metabolismo , Glutationa/metabolismo , Humanos
8.
Endocrinology ; 154(10): 3660-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23885017

RESUMO

Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético , Atividade Motora , Neurônios/metabolismo , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Quinases Associadas a rho/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Núcleo Arqueado do Hipotálamo/patologia , Comportamento Animal , Cruzamentos Genéticos , Ingestão de Energia , Leptina/sangue , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Obesidade/sangue , Obesidade/etiologia , Obesidade/patologia , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT3/metabolismo , Transmissão Sináptica , Quinases Associadas a rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...