Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395370

RESUMO

Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Humanos , Recém-Nascido , Cádmio/toxicidade , Solo , Chumbo/toxicidade , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal , Zinco/toxicidade , Metais Pesados/análise
2.
J Environ Sci Health B ; 58(3): 262-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799483

RESUMO

Sugarcane expansion has been associated with soil contamination by agrochemicals. Pesticides can affect plant growth, and their mixture might have potentiated effects on exposed species. This research aimed to evaluate the influence of fipronil on the phytotoxicity of 2,4-D on three green manure plant species: Canavalia ensiformis, Dolichos lablab, and Lupinus albus. Plants were exposed (for 21 days, at 25 °C) to a control soil and five concentrations of each pesticide and their combinations (36 treatments, considering a full-factorial approach). Effect concentrations of 50% growth inhibition (EC50) were estimated. No phytotoxicity effects were identified when plants were exposed to different fipronil concentrations (up to 0.12 mg kg-1). All species exposed to 2,4-D showed a decrease in shoot and root length and fresh/dry biomass. L. albus and D. lablab roots showed the highest sensitivity when exposed to 2,4-D among the endpoints (EC50 = 0.02 and 0.05 mg kg-1, respectively), while C. ensiformis roots were the most tolerant (EC50 = 0.98 mg kg-1). However, the interference of fipronil on the toxicity of 2,4-D was not detected in different mixture proportions, indicating no interaction between pesticides. Residues of 2,4-D might also impair other crops' growth, compromise productivity, and limit phytotechnologies for soil recovery.


Assuntos
Praguicidas , Poluentes do Solo , Esterco , Praguicidas/toxicidade , Pirazóis/toxicidade , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
J Environ Manage ; 321: 115968, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988405

RESUMO

The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.


Assuntos
Cádmio , Compostagem , Adsorção , Cádmio/química , Carvão Vegetal/química , Humanos , Chumbo , Solo , Zinco
4.
Environ Res ; 204(Pt A): 111988, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480948

RESUMO

The historic contamination of water and soils by arsenic (As) is an extremely alarming environmental and public health issue worldwide. This study investigated the relationship between As sorption and physicochemical properties of composts and biochars derived from the organic fraction of municipal solid wastes (OFMSW) towards the development of promising sorbents with value-added solid wastes management solutions. The sorbents were characterized and their effectiveness on the As sorption was tested. Several isothermal and kinetic sorption models were used for the prediction of sorption. Composts did not show promising sorption capacities, and in some cases, the As immobilization was practically null. In contrast, biochars achieved higher sorption performance, and the experimental data fitted well on Dubinin-Rabushkevich and Langmuir models, with higher R2 values. The maximum sorption capacities of BC700 estimated by such models were 6.495 and 170.252 mg g-1, respectively, whereas those of BC500 estimated by D-R and Langmuir models were only 0.066 and 0.070 mg g-1, respectively. In sorption kinetics, As was retained onto biochars at a faster first stage, reaching equilibrium after approximately 1 h and 2 h for initial concentrations of 10 and 100 mg L-1. The pseudo-second-order, Ritchie's second-order, Ritchie's, and Elovich models more adequately described the sorption kinetics of As onto biochars with high R2 values. Overall, the complexation and precipitation were predominant mechanisms for As sorption by OFMSW-derived biochars. Furthermore, the mathematical models indicated contributions arise from physisorption and external and internal diffusion mechanisms. Although BC700 can immobilize large As amounts, the gastric phase of the oral bioaccessibility test revealed more than 80% of the sorbed As could be released under conditions similar to a human stomach (pH~1.2). Such conclusions have given important insights about the refining of effective and eco-friendly remediation technologies for the management and rehabilitation of As-contaminated soil and water, particularly in developing countries.


Assuntos
Arsênio , Compostagem , Adsorção , Carvão Vegetal , Humanos , Cinética , Resíduos Sólidos
5.
J Environ Manage ; 300: 113753, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34537561

RESUMO

The use of pesticides has been increasing in recent years for maintaining traditional agricultural practices. However, these chemicals are associated with several environmental impacts, demanding urgent remediation techniques. Biochar is a carbonaceous material produced by pyrolysis that has the potential for pesticide sorption and remediation. In this context, this interdisciplinary review systematically assessed the state of the knowledge of crop residues to produce biochar for pesticide sorption. We focused on maize, rice, and wheat residues since these are the three most-produced grains worldwide. Besides, we evaluated different biochar handling, storage, and soil dispersion techniques to ease its implementation in agriculture. In general, pyrolysis temperature influences biochar characteristics and its potential for pesticide sorption. Furthermore, biochar amended soils had greater pesticide sorption capacity, limiting potential leaching and runoff. Most studies showed that the feedstock and specific surface area influence the biochar sorption properties, among other factors. Also, biochar reduces pesticides' bioavailability, decreasing their toxicity to soil organisms and improving soil fertility and crop yields. Nonetheless, the retrieved papers assessed only 21 pesticides, mainly consisting of lab-scale batch experiments. Therefore, there is still a gap in studies evaluating biochar aging, its potential desorption, pesticide co-contaminations, the associated microbiological processes, and field applications. Determining flow properties for biochars of different sizes and pellets is vital for reliable handling equipment design, and performing techno-economic assessment under different farm contexts is encouraged. Ultimately, coupling biochar production with residue management could address this challenge on sustainable agricultural systems.


Assuntos
Recuperação e Remediação Ambiental , Oryza , Praguicidas , Poluentes do Solo , Adsorção , Carvão Vegetal , Solo , Poluentes do Solo/análise , Triticum , Zea mays
6.
Environ Monit Assess ; 188(12): 698, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27896584

RESUMO

Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg-1. The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Poluição Ambiental/análise , Chumbo/análise , Mineração , Medição de Risco , Solo/química , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...