Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
New Phytol ; 237(6): 1951-1961, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626937

RESUMO

Iron (Fe) is essential for virtually all organisms, being irreplaceable because of its electrochemical properties that enable many biochemical processes, including photosynthesis. Besides its abundance, Fe is generally found in the poorly soluble form of ferric iron (Fe3+ ), while most plants uptake the soluble form Fe2+ . The model angiosperm Arabidopsis thaliana, for example, captures Fe through a mechanism that lowers rhizosphere pH through proton pumping that increases Fe3+ solubility, which is then reduced by a membrane-bound reductase and transported into the cell by the zinc-regulated, iron-regulated transporter-like protein (ZIP) family protein AtIRT1. ZIP proteins are transmembrane transporters of divalent metals such as Fe2+ , Zn2+ , Mn2+ , and Cd2+ . In this work, we investigated the evolution of functional homologs of IRON-REGULATED TRANSPORTER 1/ZIP in the supergroup Archaeplastida (Viridiplantae + Rhodophyta + Glaucophyta) using 51 genomes of diverse lineages. Our analyses suggest that Fe is acquired through deeply divergent ZIP proteins in land plants and chlorophyte green algae, indicating that Fe2+ uptake by ZIP proteins evolved independently at least twice throughout green plant evolution. Our results indicate that the archetypical IRON-REGULATED TRANSPORTER (IRT) proteins from angiosperms likely emerged before the origin of land plants during early streptophyte algae terrestrialization, a process that required the evolution of Fe acquisition in terrestrial subaerial settings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Zinco/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
2.
Plant Physiol Biochem ; 191: 89-98, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195036

RESUMO

"Acid soil syndrome" is a worldwide phenomenon characterized by low pH (pH < 5.5), scarce nutrient availability (K+, Ca2+, Mg2+, P), and mineral toxicity such as those caused by soluble aluminium (Al) forms. Regardless of the mineral toxicity, the low pH by itself is detrimental to crop development causing striking sensitivity responses such as root growth arrest. However, low pH-induced responses are still poorly understood and underrated. Here, we review and discuss the core evidence about the action of low pH upon specific root zones, distinct cell types, and possible cellular targets (cell wall, plasma membrane, and alternative oxidase). The role of different players in signaling processes leading to low pH-induced responses, such as the STOP transcription factors, the reactive oxygen species (ROS), auxin, ethylene, and components of the antioxidant system, is also addressed. Information at the molecular level is still lacking to link the low pH targets and the subsequent actors that trigger the observed sensitivity responses. Future studies will have to combine genetic tools to identify the signaling processes triggered by low pH, unraveling not only the mechanisms by which low pH affects root cells but also finding new ways to engineer the tolerance of domesticated plants to acidic stress.


Assuntos
Alumínio , Raízes de Plantas , Alumínio/metabolismo , Alumínio/toxicidade , Antioxidantes/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Minerais/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solo/química , Fatores de Transcrição/metabolismo
3.
FEMS Microbiol Ecol ; 98(6)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35488867

RESUMO

Raphidiopsis (=Cylindrospermopsis) raciborskii was described as a subtropical-tropical cyanobacterium, later reported expanding into temperate regions. Heterocyte presence used to distinguish Cylindrospermopsis from the very similar Raphidiopsis, but recently the two genera were recognized as one and unified. This study aimed to investigate how heterocyte production is related to nitrogen (N) limitation in heterocytous and non-heterocytous strains of R.raciborskii. High N-concentrations did not inhibit heterocyte development in some strains, while prolonged N-starvation periods never stimulated production in others. RT-qPCR was used to examine the genetic background, through the expression patterns of nifH, ntcA and hetR. While gene expression increased under N-restriction, N-sufficiency did not suppress nifH transcripts as previously observed in other diazotrophyc cyanobacteria, suggesting that heterocyte production in R. raciborskii is not regulated by N-availability. Heterocytous and non-heterocytous strains were genotypically characterized to assess their phylogenetic relationships. In the phylogenetic tree, clusters were intermixed and confirmed Raphidiopsis and Cylindrospermopsis as the same genus. The tree supported previous findings of earlier splitting of American strains, while contesting the African origin hypothesis. The existence of two lines of Chinese strains, with distinct evolutionary patterns, is a significant addition that could lead to new hypotheses of the species biogeography.


Assuntos
Cianobactérias , Cylindrospermopsis , Cianobactérias/genética , Expressão Gênica , Filogenia , Filogeografia
4.
J Plant Physiol ; 221: 11-21, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29223878

RESUMO

Plants are sessile organisms that must perceive and respond to various environmental constraints throughout their life cycle. Among these constraints, drought stress has become the main limiting factor to crop production around the world. Water deprivation is perceived primarily by the roots, which efficiently signal the shoot to trigger drought responses in order to maximize a plant's ability to survive. In this study, the tomato (Solanum lycopersicum L.) mutant procera (pro), with a constitutive response to gibberellin (GA), and its near isogenic line cv. Micro-Tom (MT), were used in reciprocal grafting under well-watered and water stress conditions to evaluate the role of GA signaling in root-to-shoot communication during drought stress. Growth, oxidative stress, gene expression, water relations and hormonal content were measured in order to provide insights into GA-mediated adjustments to water stress. All graft combinations with pro (i.e. pro/pro, MT/pro and pro/MT) prevented the reduction of growth under stress conditions without a reduction in oxidative stress. The increase of oxidative stress was followed by upregulation of SlDREB2, a drought-tolerance related gene, in all drought-stressed plants. Scions harboring the pro mutation tended to increase the abscisic acid (ABA) content, independent of the rootstock. Moreover, the GA sensitivity of the rootstock modulated stomatal conductance and water use efficiency under drought stress, indicating GA and ABA crosstalk in the adjustment of growth and water economy.


Assuntos
Secas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Solanum lycopersicum/fisiologia , Regulação da Expressão Gênica , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo
5.
Genet Mol Biol ; 40(1 suppl 1): 346-359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399192

RESUMO

Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

6.
Genet. mol. biol ; 40(1,supl.1): 346-359, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892391

RESUMO

Abstract Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

7.
Plant Cell Rep ; 28(8): 1169-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19484241

RESUMO

We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.


Assuntos
Etilenos/farmacologia , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...