Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(4): 1306-1318, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38347752

RESUMO

Chiral organic-inorganic perovskites exhibit unique physicochemical properties driven by the symmetry of monovalent organic cations. However, an atomistic understanding of how chiral cations transfer their chirality to the inorganic framework and the role played by van der Waals (vdW) interactions in this process is still incomplete. In this work, we report a theoretical investigation, based on density functional theory calculations within the Perdew-Burke-Ernzerhof (PBE) formulation for the exchange-correlation functional, into the role of the vdW interactions in the chirality transfer process. For that, we selected several vdW corrections, namely, Grimme (D2, D3, D3(BJ)), Tkatchenko-Scheffler (TS, TS+SCS, TS+HSI), density-dependent energy correction (dDsC), and many-body scattering (MBD) energy method correction. For the chiral perovskite systems, we selected a set of chiral organic-inorganic perovskites with several dimensions, namely, from zero-dimensional to three-dimensional, each having enantiomers with R and S configurations. Based on a statistical treatment of the relative errors of all lattice parameters with respect to experimental data, we found that D3, D3(BJ), TS, TS+SCS, TS+HSI, and MBD vdW are the most accurate corrections to describe the equilibrium structural properties of chiral perovskites using the PBE method. We identify chirality-induced sequential asymmetries of distorted octahedrons and propose angular descriptors to quantify them, where the orientations of these distortions depend on the R or S nature of the chiral cations. Furthermore, we demonstrate the importance of accurate vdW interactions in precisely describing these asymmetric distortions. By means of binding energies and charge-transfer analysis, we show that the impact of vdW corrections on the charge distribution leads to a subtle strengthening of hydrogen bonds between chiral cations and inorganic octahedra, resulting in an increase in the binding energy. Finally, we identified that the Rashba-Dresselhaus effect in two-dimensionality is refined by vdW interactions.


Assuntos
Compostos de Cálcio , Óxidos , Titânio , Teoria da Densidade Funcional , Ligação de Hidrogênio , Cátions
2.
Phys Chem Chem Phys ; 26(10): 8469-8487, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38410922

RESUMO

Efficient surface passivation and toxic lead (Pb) are known obstacles to the photovoltaic application of perovskite-based solar cells. A possible solution for these problems is to use thin-films of two-dimensional (2D) perovskite-based materials and the replacement of Pb with alternative divalent cations (B); however, our atomistic understanding of the differences between (3D) three-dimensional and 2D perovskite-based materials is far from satisfactory. Herein, we report a systematic theoretical investigation based on ab initio density functional theory (DFT) calculations for both 3D MABX3 and the Ruddlesden-Popper 2D (BA)2(MA)B2X7 (B = Ge, Sn, Pb, and X = Cl, Br, I) compounds to investigate the differences (contrasts) in selected physical-chemical properties, i.e., structural parameters, energetic stability, electronic, and optical properties. We found an increased cation/anion charge separation because of the presence of organic spacers, which results in stronger Coulomb interactions in the inorganic framework, and hence, it enhances the cohesive energy (stability) within the inorganic layer. The inorganic layer constitutes the optically active region that contributes to the superior performance of perovskite-based solar cells. We quantified this effect by comparing the average electronic charges at the X sites in both 2D and 3D perovskites. This comparison is then correlated with variations in BX6-octahedron volumes, resulting in a monotonic relation. Moreover, the electronic structure characterization demonstrates that Ge-based systems present weakly sensitive band gaps to dimensionality due to a compensatory effect between Jahn-Teller distortions and quantum confinement. Lead-free GeI-, SnBr-, and SnI-based perovskites have DFT band gaps closer to the optimal value used in photovoltaic applications. Finally, as expected, the 2D systems absorption coefficients show pronounced anisotropy.

3.
J Phys Condens Matter ; 33(2): 025003, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32756023

RESUMO

The combination of two-dimensional crystals through the formation of van der Waals bilayers, trilayers, and heterostructures has been considered a promising route to design new materials due to the possibility of tuning their properties through the control of the number of layers, alloying pressure, strain, and other tuning mechanisms. Here, we report a density functional theory study on the interlayer phonon coupling and electronic structure of the trilayer h-BN/SnTe/h-BN, and the effects of pressure on the encapsulation of this trilayer system. Our findings demonstrated the establishment of a type I junction in the system, with a trivial bandgap of 0.55 eV, which is 10 % lower than the free-standing SnTe one. The almost inert h-BN capping layers allow a topological phase transition at a pressure of 13.5 GPa, in which the system evolves from a trivial insulator to a topological insulator. In addition, with further increase of the pressure up to 35 GPa, the non-trivial energy bandgap increases up to 0.30 eV. This behavior is especially relevant to allow experimental access to topological properties of materials, since large non-trivial energy bandgaps are required.

4.
J Phys Condens Matter ; 32(2): 025505, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31581147

RESUMO

YbMgGaO4 was recently proposed as a promising quantum-spin-liquid candidate material. However, some details of its structure, such as those related to a spatial anisotropy, were not completely understood. In this work, we perform ab initio calculations based on density-functional-theory to investigate the structural, the electronic and the magnetic properties of YbMgGaO4. The geometrical model was constructed to take into account disorder effects produced by the random distribution of Ga and Mg along the lattice. We found a substantial spatial anisotropy revealed by variations up to 8% in the Mg-O and Ga-O bond lengths, which results in variations up to 3% in the Yb-Yb distances along its triangular lattice. Thus, the Yb lattice was not perfectly triangular. Furthermore, we demonstrate an out-of-plane magnetization at the Yb atoms with magnetic anisotropy energy of [Formula: see text] eV/Yb and a small interlayer exchange of [Formula: see text] eV/Yb, demonstrating that the system is only approximately two-dimensional. The presented results provide insights for an atomic-scale understanding of YbMgGaO4 with density-functional-theory calculations.

5.
Phys Chem Chem Phys ; 21(44): 24584-24591, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31664278

RESUMO

The electronic transport properties in molecular heterojunctions are intimately connected with the molecular conformation between the electrodes, and the electronic structure of the molecule/electrode interface. In this work, we perform an ab initio density-functional-theory investigation of the structural and transport properties through self-assembled CuPc molecules sandwiched between gold contacts with (111) surfaces. We demonstrated (i) a tunneling regime ruled by the π orbitals of the aromatic rings of CuPc molecules; and (ii) a high variation (up to two orders of magnitude) of the current density with the orientation of the CuPc molecules relative to the gold surface. The source of this variation is the geometrical dependence of the energy of the highest-occupied-molecular-orbital with respect to the chemical potential of the metal and the generation of intra-molecular transport channels for a configuration with CuPc molecules tilted with respect to the gold surface.

6.
Phys Chem Chem Phys ; 21(41): 23076-23084, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31595273

RESUMO

An improved atomistic understanding of the W-based two-dimensional transition-metal dichalcogenides (2D TMDs) is crucial for technological applications of 2D materials, since the presence of tungsten endows these materials with distinctive properties. However, our atomistic knowledge on the evolution of the structural, electronic, and energetic properties and on the nanoflake stability of such materials is not properly addressed hitherto. Thus, we present a density functional theory (DFT) study of stoichiometric (WQ2)n nanoflakes, with Q = S, Se, Te, and n = 1,…,16, 36, 66, and 105. We obtained the configurations with n = 1,…,16 through the tree growth algorithm whereas the nanoflakes with n = 36, 66, and 105 were generated from fragments of 2D TMDs with an abundant diversity of shapes and edge configurations. We found that all the most stable nanoflakes present the same Q-terminated edge configuration. Furthermore, in isomers with n = 1,…,16 sizes, nanoflakes with triangular shapes and their derivatives, such as the rhombus geometry, define magic numbers, whereas for n > 16, triangular shapes were also found for the most stable structures, because they preserve the edge configuration. A strong modulation of the Hirshfeld charges, depending on chalcogen species and core or edge position, is also observed. The modulation of the Hirshfeld charge due to the nature of the W metal atoms makes the energetic 1D → 1T' transition of (WQ2)n differ in nanoflake size in relation to (MoQ2)n nanoflakes. Our analysis shows the interplay between edge configuration, coordination environment, and shape that determines the stability of nanoflakes, and allows us to describe design principles for stable 1T' stoichiometric nanoflakes of various sizes.

7.
Phys Chem Chem Phys ; 21(21): 11359-11366, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111140

RESUMO

Transition metal dichalcogenides (TMDCs) are promising materials for applications in nanoelectronics and correlated fields, where their metallic edge states play a fundamental role in the electronic transport. In this work, we investigate the transport properties of MoS2 zigzag nanoribbons under a butadiene (C4H6) atmosphere, as this compound has been used to obtain MoS2 flakes by exfoliation. We use density functional theory combined with non-equilibrium Green's function techniques, in a methodology contemplating disorder and different coverages. Our results indicate a strong modulation of the TMDC electronic transport properties driven by butadiene molecules anchored at their edges, producing the suppression of currents due to a backscattering process. Our results indicate a high sensitivity of the TMDC edge states. Thus, the mechanisms used to reduce the dimensionality of MoS2 considerably modify its transport properties.

8.
ACS Appl Mater Interfaces ; 11(1): 1529-1537, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525366

RESUMO

Tuning the magnetic properties of materials is a demand of several technologies; however, our microscopic understanding of the process that drives the enhancement of those properties is still unsatisfactory. In this work, we combined experimental and theoretical techniques to investigate the handling of magnetic properties of FeCo thin films via the thickness-tuning of a gold film used as an underlayer. We grow the samples by the deposition of polycrystalline FeCo thin films on the Au underlayer at room temperature by a magnetron sputtering technique, demonstrating that the lattice parameter of the sub-20 nm thickness gold underlayer is dependent on its thickness, inducing a stress up to 3% in sub-5 nm FeCo thin films deposited over it. Thus, elastic-driven variations for the in-plane magnetic anisotropy energy, Ku, up to 110% are found from our experiments. Our experimental findings are in excellent agreement with ab initio quantum chemistry calculations based on density functional theory, which helps to build up an atomistic understanding of the effects that take place in the tuning of the magnetic properties addressed in this work. The handling mechanism reported here should be applied to other magnetic films deposited on different metallic underlayers, opening possibilities for large-scale fabrication of magnetic components to be used in future devices.

9.
Nanotechnology ; 29(7): 075703, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29219845

RESUMO

The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in [Formula: see text] and the [Formula: see text] hybridizations. However, most of the theoretical models were elaborated taking as the starting point [Formula: see text] structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo [Formula: see text]. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an [Formula: see text] hybridization, and with few [Formula: see text] atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

10.
J Chem Phys ; 126(14): 144107, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17444701

RESUMO

We explore and compare three approximate schemes allowing simple implementation of complex density functionals by making use of self-consistent implementation of simpler functionals: (i) post-local-density approximation (LDA) evaluation of complex functionals at the LDA densities (or those of other simple functionals) (ii) application of a global scaling factor to the potential of the simple functional, and (iii) application of a local scaling factor to that potential. Option (i) is a common choice in density-functional calculations. Option (ii) was recently proposed by Cafiero and Gonzalez [Phys. Rev. A 71, 042505 (2005)]. We here put their proposal on a more rigorous basis, by deriving it, and explaining why it works, directly from the theorems of density-functional theory. Option (iii) is proposed here for the first time. We provide detailed comparisons of the three approaches among each other and with fully self-consistent implementations for Hartree, local-density, generalized-gradient, self-interaction corrected, and meta-generalized-gradient approximations, for atoms, ions, quantum wells, and model Hamiltonians. Scaled approaches turn out to be, on average, better than post approaches, and unlike these also provide corrections to eigenvalues and orbitals. Scaled self-consistency thus opens the possibility of efficient and reliable implementation of density functionals of hitherto unprecedented complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...