Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 5576, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692413

RESUMO

We address the use of Euler's theorem and topological algorithms to design 18 polyhedral hydrocarbons of general formula CnHn that exist up to 28 vertexes containing four- and six-membered rings only; compounds we call "nuggets". Subsequently, we evaluated their energies to verify the likelihood of their chemical existence. Among these compounds, 13 are novel systems, of which 3 exhibit chirality. Further, the ability of all nuggets to perform fusion reactions either through their square faces, or through their hexagonal faces was evaluated. Indeed, they are potentially able to form bottom-up derived molecular hyperstructures with great potential for several applications. By considering these fusion abilities, the growth of the nuggets into 1D, 2D, and 3D-scaffolds was studied. The results indicate that nugget24a (C24H24) is predicted to be capable of carrying out fusion reactions. From nugget24a, we then designed 1D, 2D, and 3D-scaffolds that are predicted to be formed by favorable fusion reactions. Finally, a 3D-scaffold generated from nugget24a exhibited potential to be employed as a voxel with a chemical structure remarkably similar to that of MOF ZIF-8. And, such a voxel, could in principle be employed to generate any 3D sculpture with nugget24a as its level of finest granularity.

2.
ACS Omega ; 2(10): 6786-6794, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457266

RESUMO

We advance the concept that a single efficient antenna ligand substituted in or added to an otherwise weakly luminescent europium complex is enough to significantly boost its luminescence. Our results, on the basis of photophysical measurements on 5 novel europium complexes and 15 known ones, point in the direction that ligand dissimilarity and ligand diversity are all concepts that clearly play a fundamental role in the luminescence of europium complexes. We show that it is important that a symmetry breaker ligand exists in the complex to enhance ligand dissimilarity and ligand diversity, all mainly affecting the nonradiative decay rate by reducing it. Because the presence of at least one antenna ligand is also obviously necessary, the optimal and the most cost-effective situation can be achieved by adding a single coordination symmetry breaker that is also an efficient antenna, such as 1-(2-thenoyl)-3,3,3-trifluoroacetone or 4,4,4-trifluoro-1-phenyl-1,3-butanedione. In such cases the quantum efficiency, η, is decidedly boosted, as can be verified by going from complex [EuCl2(TPPO)4]Cl·3H2O with η = 0% to the novel complex [EuCl2(BTFA)(TPPO)3], where TPPO stands for triphenylphosphine oxide, with η = 62%.

3.
J Mol Model ; 22(11): 255, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27704221

RESUMO

We evaluated a group of phthalimide derivatives, which comprise a convenient test set for the study of the multiple factors involved in the energetics of hydrogen bond formation. Accordingly, we carried out quantum chemical calculations on the hydrogen bonded complexes formed between a sample of phthalimide derivatives with formic acid with the intent of identifying the most important electronic and structural factors related to how their strength and spontaneity vary across the series. The geometries of all species considered were fully optimized at DFT B3LYP/6-31++G(d,p), RM1, RM1-DH2, and RM1-D3H4 level, followed by frequency calculations to determine their Gibbs free energies of hydrogen bond formation using Gaussian 2009 and MOPAC 2012. Our results indicate that the phthalimide derivatives that form hydrogen bond complexes most favorably, have in their structures only one C=O group and at least one NH group. On the other hand, the phthalimide derivatives predicted to form hydrogen bonds least favorably, possess in their structures two carbonyl groups, C=O, and no NH group. The ability to donate electrons and simultaneously receive one acidic hydrogen is the most important property related to the spontaneity of hydrogen bond formation. We further chose two cyclic compounds, phthalimide and isoindolin-1-one, in which to study the main changes in molecular, structural and spectroscopic properties as related to the formation of hydrogen bonds. Thus, the greatest ability of the isoindolin-1-one compound in forming hydrogen bonds is evidenced by the larger effect on the structural, vibrational, and chemical shifts properties associated with the O-H group. In summary, the electron-donating ability of the hydrogen bond acceptor emerged as the most important property differentiating the spontaneity of hydrogen bond formation in this group of complexes.

4.
Sci Rep ; 6: 21204, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892900

RESUMO

The spontaneous emission coefficient, Arad, a global molecular property, is one of the most important quantities related to the luminescence of complexes of lanthanide ions. In this work, by suitable algebraic transformations of the matrices involved, we introduce a partition that allows us to compute, for the first time, the individual effects of each ligand on Arad, a property of the molecule as a whole. Such a chemical partition thus opens possibilities for the comprehension of the role of each of the ligands and their interactions on the luminescence of europium coordination compounds. As an example, we applied the chemical partition to the case of repeating non-ionic ligand ternary complexes of europium(III) with DBM, TTA, and BTFA, showing that it allowed us to correctly order, in an a priori manner, the non-obvious pair combinations of non-ionic ligands that led to mixed-ligand compounds with larger values of Arad.

5.
PLoS One ; 10(12): e0143998, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710103

RESUMO

ß-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(ß-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of ß-diketonate ligands to form the complexes Eu(ß-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(ß-diketonate)3(L)2. However, the Eu(ß-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen ß-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(ß-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The ß-diketonates are then carefully added to this intermediate to form the target complexes Eu(ß-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%.


Assuntos
Európio/química , Cetonas/química , Substâncias Luminescentes/síntese química , Ligantes , Luminescência , Substâncias Luminescentes/química
6.
Sci Rep ; 5: 13695, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329420

RESUMO

We advance the concept that the charge factors of the simple overlap model and the polarizabilities of Judd-Ofelt theory for the luminescence of europium complexes can be effectively and uniquely modeled by perturbation theory on the semiempirical electronic wave function of the complex. With only three adjustable constants, we introduce expressions that relate: (i) the charge factors to electronic densities, and (ii) the polarizabilities to superdelocalizabilities that we derived specifically for this purpose. The three constants are then adjusted iteratively until the calculated intensity parameters, corresponding to the (5)D0→(7)F2 and (5)D0→(7)F4 transitions, converge to the experimentally determined ones. This adjustment yields a single unique set of only three constants per complex and semiempirical model used. From these constants, we then define a binary outcome acceptance attribute for the adjustment, and show that when the adjustment is acceptable, the predicted geometry is, in average, closer to the experimental one. An important consequence is that the terms of the intensity parameters related to dynamic coupling and electric dipole mechanisms will be unique. Hence, the important energy transfer rates will also be unique, leading to a single predicted intensity parameter for the (5)D0→(7)F6 transition.

7.
J Mol Model ; 20(11): 2477, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25342154

RESUMO

MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.


Assuntos
Ácidos Carboxílicos/química , Simulação por Computador , Dimetil Sulfóxido/química , Modelos Químicos , Modelos Moleculares , Solventes/química , Espectrofotometria Infravermelho , Transferência de Energia , Ligação de Hidrogênio , Estrutura Molecular , Prótons , Relação Estrutura-Atividade , Vibração
8.
Sci Rep ; 3: 2395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928866

RESUMO

Lanthanide luminescence has many important applications in anion sensing, protein recognition, nanosized phosphorescent devices, optoelectronic devices, immunoassays, etc. Luminescent europium complexes, in particular, act as light conversion molecular devices by absorbing ultraviolet (UV) light and by emitting light in the red visible spectral region. The quantum yield of luminescence is defined as the ratio of the number of photons emitted over the number of UV photons absorbed. The higher the quantum yield of luminescence, the higher the sensitivity of the application. Here we advance a conjecture that allows the design of europium complexes with higher values of quantum yields by simply increasing the diversity of good ligands coordinated to the lanthanide ion. Indeed, for the studied cases, the percent boost obtained on the quantum yield proved to be strong: of up to 81%, accompanied by faster radiative rate constants, since the emission becomes less forbidden.


Assuntos
Európio/química , Medições Luminescentes/métodos , Modelos Químicos , Simulação por Computador , Luz , Teste de Materiais , Teoria Quântica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...