Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 7: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859280

RESUMO

BACKGROUND: Pregnant women with mild gestational hyperglycemia present a high risk for hypertension and obesity, and appear to reproduce the model of metabolic syndrome in pregnancy, including hyperinsulinemia and insulin resistance. Diabetic patients have a higher frequency of the IRS-1 Gly972Arg variant and this polymorphism is directly related to insulin resistance and subsequent hyperglycemia. In diabetes, hyperglycemia and other associated factors generate reactive oxygen species that increase DNA damage. The aims of this study were to evaluate the presence of the IRS-1 Arg972 polymorphism in pregnant women with diabetes or mild gestational hyperglycemia, and in their newborns. Additionally, we evaluated the level of primary DNA damage in lymphocytes of Brazilian pregnant women and the relationship between the amount of genetic damage and presence of the polymorphism. METHODS: A based on the oral glucose tolerance test (OGTT) results and on glycemic profiles (GP), as follows: non-diabetic group, mild gestational hyperglycemia (MGH) and diabetic group. Eighty-five newborns were included in the study. Maternal peripheral blood samples and umbilical cord blood samples (5-10 mL) were collected for genotyping by PCR-RFLP and for comet assays. RESULTS: The prevalence of genotype Gly/Arg in pregnant women groups was not statistically significant. In newborns, the frequency of Gly/Arg was significantly higher in the MGH and diabetic groups than in the non-diabetic group. Taken together, groups IIA and IIB (IIA + IIB; diabetes) presented lower amounts of DNA damage than the non-diabetic group (p = 0.064). No significant association was detected between genetic damage and the presence of the Arg972 genotype in pregnant women. CONCLUSION: The polymorphism was more prevalent in newborns of diabetic and MGH women. We believe that it is necessary to increase the number of subjects to be examined in order to better determine the biological role of the Arg972 polymorphism in these patients. Despite being classified as low-risk, pregnant women with mild gestational hyperglycemia characterize a population of maternal and perinatal adverse outcomes, and that, together with their newborns, require better monitoring by professionals and health services.

2.
Obesity (Silver Spring) ; 21(8): 1596-601, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666719

RESUMO

OBJECTIVE: Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. DESIGN AND METHODS: Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. RESULTS: The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. CONCLUSION: In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome.


Assuntos
Dano ao DNA/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Obesidade/fisiopatologia , Fumar/efeitos adversos , Animais , Colesterol/sangue , Feminino , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Triglicerídeos/sangue
3.
Diabetol Metab Syndr ; 3: 20, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851636

RESUMO

BACKGROUND: The purpose of this study was to evaluate the effects of cigarette smoke exposure before pregnancy on diabetic rats and their offspring development. METHODS: Diabetes was induced by streptozotocin and cigarette smoke exposure was conducted by mainstream smoke generated by a mechanical smoking device and delivered into a chamber. Diabetic female Wistar rats were randomly distributed in four experimental groups (n minimum = 13/group): nondiabetic (ND) and diabetic rats exposed to filtered air (D), diabetic rats exposed to cigarette smoke prior to and into the pregnancy period (DS) and diabetic rats exposed to cigarette smoke prior to pregnancy period (DSPP). At day 21 of pregnancy, rats were killed for maternal biochemical determination and reproductive outcomes. RESULTS: The association of diabetes and cigarette smoke in DSPP group caused altered glycemia at term, reduced number of implantation and live fetuses, decreased litter and maternal weight, increased pre and postimplantation loss rates, reduced triglyceride and VLDL-c concentrations, increased levels of thiol groups and MDA. Besides, these dams presented increased SOD and GSH-Px activities. However, the increased antioxidant status was not sufficient to prevent the lipid peroxidation observed in these animals. CONCLUSION: Despite the benefits stemming from smoking interruption during the pregnancy of diabetic rats, such improvement was insufficient to avoid metabolic alterations and provide an adequate intrauterine environment for embryofetal development. Therefore, these results suggest that it is necessary to cease smoking extensive time before planning pregnancy, since stopping smoking only when pregnancy is detected may not contribute effectively to fully adequate embryofetal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...