Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 127: 106000, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853296

RESUMO

In the last decade, emerging evidence has shown that low molecular weight protein tyrosine phosphatase (LMWPTP) not only contributes to the progression of cancer but is associated with prostate low survival rate and colorectal cancer metastasis. We report that LMWPTP favors the glycolytic profile in some tumors. Therefore, the focus of the present study was to identify metabolic enzymes that correlate with LMWPTP expression in patient samples. Exploratory data analysis from RNA-seq, proteomics, and histology staining, confirmed the higher expression of LMWPTP in CRC. Our descriptive statistical analyses indicate a positive expression correlation between LMWPTP and energy metabolism enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). In addition, we examine the potential of violacein to reprogram energetic metabolism and LMWPTP activity. Violacein treatment induced a shift of glycolytic to oxidative metabolism associated with alteration in mitochondrial efficiency, as indicated by higher oxygen consumption rate. Particularly, violacein treated cells displayed higher proton leak and ATP-linked oxygen consumption rate (OCR) as an indicator of the OXPHOS preference. Notably, violacein is able to bind and inhibit LMWPTP. Since the LMWPTP acts as a hub of signaling pathways that offer tumor cells invasive advantages, such as survival and the ability to migrate, our findings highlight an unexplored potential of violacein in circumventing the metabolic plasticity of tumor cells.


Assuntos
Neoplasias Colorretais , Proteínas Tirosina Fosfatases , Neoplasias Colorretais/patologia , Humanos , Indóis , Masculino , Mitocôndrias/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
2.
Eur J Pharmacol ; 928: 175122, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35764131

RESUMO

Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve ß-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to ß-cells. For this reason, we investigated whether rosiglitazone could protect ß-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve ß-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Rosiglitazona , Amiloide/metabolismo , Animais , Apoptose , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ratos , Rosiglitazona/farmacologia
3.
J Med Food ; 25(6): 630-635, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612492

RESUMO

Redox imbalance can lead to irreversible damages to biological functions. In this context, rutin stands out for its antioxidant potential. The objective of this study was to evaluate the acute and chronic effect of rutin on the hepatic redox imbalance. The study was performed according to three different protocols. First, healthy male Swiss mice were divided into two groups: control and rutin, the second of which received chronic oral supplementation of rutin (10 mg/kg). The second involved evaluation of the generation of reactive oxygen species (ROS) by HepG2 cells, incubated or not with rutin (20 and 40 µg/mL) for 3 h. The final protocol involved assessment of the acute effect of rutin (10 mg/kg) in mice with oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP). After the in vivo treatments, the livers were collected to analyze the oxidative damage by thiol, and the antioxidant defense by catalase, superoxide dismutase, and glutathione peroxidase. In the HepG2 cells, the following probes were employed to assess the ROS production: dichlorofluorescein, MitoSOX, dihydroethidium, and Amplex Red. Rutin administered chronically improved the antioxidant defense in healthy animals, and when administered acutely both inhibited the increased production of ROS in HepG2 cells and improved the redox imbalance parameters in mice with induced oxidative stress. This study suggests rutin as a protective agent for restoration of hepatic redox homeostasis in redox injury induced by ABAP in Swiss mice and HelpG2 cells.


Assuntos
Antioxidantes , Rutina , Amidinas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Rutina/metabolismo , Rutina/farmacologia
4.
Life Sci ; 291: 120239, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942163

RESUMO

Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise. MAIN METHODS: Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females. KEY FINDINGS: Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1α expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1α target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring. SIGNIFICANCE: Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1α co-repressor.


Assuntos
Mitocôndrias/metabolismo , Condicionamento Físico Animal/fisiologia , Esforço Físico/fisiologia , Animais , Metilação de DNA , Epigênese Genética/genética , Feminino , Masculino , Camundongos , Mitocôndrias/fisiologia , Músculo Esquelético/fisiologia , Correpressor 1 de Receptor Nuclear/metabolismo , Consumo de Oxigênio/fisiologia , Herança Paterna/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Condicionamento Físico Animal/métodos , RNA Mensageiro/genética
5.
Saudi Pharm J ; 29(9): 1061-1069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34588851

RESUMO

The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.

6.
PeerJ ; 9: e10500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859869

RESUMO

BACKGROUND: Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. METHODOLOGY: RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. RESULTS: Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. CONCLUSION: Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.

7.
J Cell Biochem ; 122(5): 549-561, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33459432

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) is the only known protein containing the amino acid residue hypusine, essential for its activity. Hypusine residue is produced by a posttranslational modification involving deoxyhypusine synthetase and deoxyhypusine hydroxylase. Herein, we aimed to describe the role of the alternative human isoform A on mitochondrial processes. Isoform A depletion modulates oxidative metabolism in association with the downregulation of mitochondrial biogenesis-related genes. Through positive feedback, it increases cell respiration leading to highly reactive oxygen species production, which impacts mitochondrial bioenergetics. These metabolic changes compromise mitochondrial morphology, increasing its electron density and fission, observed by transmission electron microscopy. This set of changes leads the cells to apoptosis, evidenced by increased DNA fragmentation and proapoptotic BAK protein content increase. Thus, we show that the alternative eIF5A isoform A is crucial for energy metabolism controlled by mitochondria and cellular survival.


Assuntos
Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose/fisiologia , Humanos , Lisina/análogos & derivados , Lisina/metabolismo , Microscopia Eletrônica de Transmissão , Fatores de Iniciação de Peptídeos/genética , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
8.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268375

RESUMO

MicroRNAs (miRNAs) have been implicated in oxidative metabolism and brown/beige adipocyte identity. Here, we tested whether widespread changes in miRNA expression promoted by treatment with the small-molecule enoxacin cause browning and prevent obesity. Enoxacin mitigated diet-induced obesity in mice, and this was associated with increased energy expenditure. Consistently, subcutaneous white and brown adipose tissues and skeletal muscle of enoxacin-treated mice had higher levels of markers associated with thermogenesis and oxidative metabolism. These effects were cell autonomous since they were recapitulated in vitro in murine and human cell models. In preadipocytes, enoxacin led to a reduction of miR-34a-5p expression and up-regulation of its target genes (e.g., Fgfr1, Klb, and Sirt1), thus increasing FGF21 signaling and promoting beige adipogenesis. Our data demonstrate that enoxacin counteracts obesity by promoting thermogenic signaling and inducing oxidative metabolism in adipose tissue and skeletal muscle in a mechanism that involves, at least in part, miRNA-mediated regulation.


Assuntos
Enoxacino , MicroRNAs , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético , Enoxacino/metabolismo , Enoxacino/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/etiologia , Obesidade/genética , Estresse Oxidativo , Termogênese/genética
9.
Am J Physiol Cell Physiol ; 319(3): C541-C551, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697599

RESUMO

Lin28a/miRNA let-7b-5p pathway has emerged as a key regulators of energy homeostasis in the skeletal muscle. However, the mechanism through which this pathway is regulated in the skeletal muscle has remained unclear. We have found that 8 wk of aerobic training (Tr) markedly decreased let-7b-5p expression in murine skeletal muscle, whereas high-fat diet (Hfd) increased its expression. Conversely, Lin28a expression, a well-known inhibitor of let-7b-5p, was induced by Tr and decreased by Hfd. Similarly, in human muscle biopsies, Tr increased LIN28 expression and decreased let-7b-5p expression. Bioinformatics analysis of LIN28a DNA sequence revealed that its enrichment in peroxisome proliferator-activated receptor delta (PPARδ) binding sites, which is a well-known metabolic regulator of exercise. Treatment of primary mouse skeletal muscle cells or C2C12 cells with PPARδ activators GW501516 and AICAR increased Lin28a expression. Lin28a and let-7b-5p expression was also regulated by PPARδ coregulators. While PPARγ coactivator-1α (PGC1α) increased Lin28a expression, corepressor NCoR1 decreased its expression. Furthermore, PGC1α markedly reduced the let-7b-5p expression. PGC1α-mediated induction of Lin28a expression was blocked by the PPARδ inhibitor GSK0660. In agreement, Lin28a expression was downregulated in PPARδ knocked-down cells leading to increased let-7b-5p expression. Finally, we show that modulation of the Lin28a-let-7b-5p pathway in muscle cells leads to changes in mitochondrial metabolism in PGC1α dependent fashion. In summary, we demonstrate that Lin28a-let-7b-5p is a direct target of PPARδ in the skeletal muscle, where it impacts mitochondrial respiration.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular , Regulação para Baixo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , PPAR delta/genética
10.
Proteome Sci ; 18: 4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368190

RESUMO

BACKGROUND: Members of the family of NEK protein kinases (NIMA-related kinases) were described to have crucial roles in regulating different aspects of the cell cycle. NEK10 was reported to take part in the maintenance of the G2/M checkpoint after exposure to ultraviolet light. NEK1, NEK5, NEK2 and NEK4 proteins on the other hand have been linked to mitochondrial functions. METHODS: HEK293T cells were transfected with FLAG empty vector or FLAG-NEK10 and treated or not with Zeocin. For proteomic analysis, proteins co-precipitated with the FLAG constructs were digested by trypsin, and then analyzed via LC-MS/MS. Proteomic data retrieved were next submitted to Integrated Interactome System analysis and differentially expressed proteins were attributed to Gene Ontology biological processes and assembled in protein networks by Cytoscape. For functional, cellular and molecular analyses two stable Nek10 silenced HeLa cell clones were established. RESULTS: Here, we discovered the following possible new NEK10 protein interactors, related to mitochondrial functions: SIRT3, ATAD3A, ATAD3B, and OAT. After zeocin treatment, the spectrum of mitochondrial interactors increased by the proteins: FKBP4, TXN, PFDN2, ATAD3B, MRPL12, ATP5J, DUT, YWHAE, CS, SIRT3, HSPA9, PDHB, GLUD1, DDX3X, and APEX1. We confirmed the interaction of NEK10 and GLUD1 by proximity ligation assay and confocal microscopy. Furthermore, we demonstrated that NEK10-depleted cells showed more fragmented mitochondria compared to the control cells. The knock down of NEK10 resulted further in changes in mitochondrial reactive oxygen species (ROS) levels, decreased citrate synthase activity, and culminated in inhibition of mitochondrial respiration, affecting particularly ATP-linked oxygen consumption rate and spare capacity. NEK10 depletion also decreased the ratio of mtDNA amplification, possibly due to DNA damage. However, the total mtDNA content increased, suggesting that NEK10 may be involved in the control of mtDNA content. CONCLUSIONS: Taken together these data place NEK10 as a novel regulatory player in mitochondrial homeostasis and energy metabolism.

11.
Mol Cell Endocrinol ; 501: 110661, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31770568

RESUMO

Pioglitazone belongs to the class of drugs thiazolidinediones (TZDs) and is an oral hypoglycemic drug, used in the treatment of type 2 diabetes, which improves insulin sensitivity in target tissues. Adipose tissue is the main target of pioglitazone, a PPARg and PPARa agonist; however, studies also point to skeletal muscle as a target. Non-PPAR targets of TZDs have been described, thus we aimed to study the direct effects of pioglitazone on skeletal muscle and the possible role of microRNAs as targets of this drug. Pioglitazone treatment of obese mice increased insulin-mediated glucose transport as a result of increased fatty acid oxidation and mitochondrial activity. PPARg blockage by treatment with GW9662 nullified pioglitazone's effect on systemic and muscle insulin sensitivity and citrate synthase activity of obese mice. After eight weeks of high-fat diet, miR-221-3p expression in soleus muscle was similar among the groups and miR-23b-3p and miR-222-3p were up-regulated in obese mice compared to the control group, and treatment with pioglitazone was able to reverse this condition. In vitro studies in C2C12 cells suggest that inhibition of miR-222-3p protects C2C12 cells from insulin resistance and increased non-mitochondrial respiration induced by palmitate. Together, these data demonstrate a role of pioglitazone in the downregulation of microRNAs that is not dependent on PPARg. Moreover, miR-222 may be a novel PPARg-independent mechanism through which pioglitazone improves insulin sensitivity in skeletal muscle.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , MicroRNAs/metabolismo , Músculo Esquelético/efeitos dos fármacos , Pioglitazona/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Palmitatos/farmacologia , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacos
12.
Sci Rep ; 9(1): 15529, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664147

RESUMO

Leucine can stimulate protein synthesis in skeletal muscle, and recent studies have shown an increase in leucine-related mitochondrial biogenesis and oxidative phosphorylation capacity in muscle cells. However, leucine-related effects in tumour tissues are still poorly understood. Thus, we described the effects of leucine in both in vivo and in vitro models of a Walker-256 tumour. Tumour-bearing Wistar rats were randomly distributed into a control group (W; normoprotein diet) and leucine group (LW; leucine-rich diet [normoprotein + 3% leucine]). After 20 days of tumour evolution, the animals underwent 18-fludeoxyglucose positron emission computed tomography (18F-FDG PET-CT) imaging, and after euthanasia, fresh tumour biopsy samples were taken for oxygen consumption rate measurements (Oroboros Oxygraph), electron microscopy analysis and RNA and protein extraction. Our main results from the LW group showed no tumour size change, lower tumour glucose (18F-FDG) uptake, and reduced metastatic sites. Furthermore, leucine stimulated a shift in tumour metabolism from glycolytic towards oxidative phosphorylation, higher mRNA and protein expression of oxidative phosphorylation components, and enhanced mitochondrial density/area even though the leucine-treated tumour had a higher number of apoptotic nuclei with increased oxidative stress. In summary, a leucine-rich diet directed Walker-256 tumour metabolism to a less glycolytic phenotype profile in which these metabolic alterations were associated with a decrease in tumour aggressiveness and reduction in the number of metastatic sites in rats fed a diet supplemented with this branched-chain amino acid.


Assuntos
Carcinoma 256 de Walker/metabolismo , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Leucina/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Carcinoma 256 de Walker/dietoterapia , Carcinoma 256 de Walker/patologia , Feminino , Alimentos Formulados , Metástase Neoplásica , Ratos , Ratos Wistar
13.
J Physiol ; 597(16): 4277-4291, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228206

RESUMO

KEY POINTS: We report that the peroxisome proliferator-activated receptor (PPAR)γ coactivator 1-α (PGC-1α)/PPARß axis is a crucial mediator of uncoupling protein 3 (UCP3) expression in skeletal muscle cells via the transactivativation of a distal PPAR response element at the Ucp3 gene promoter. This mechanism is activated during the myogenic process and by high concentrations of fatty acids independent of PGC-1α protein levels. Ucp3 is essential for PGC-1α-induced oxidative capacity and the adaptive mitochondrial response to fatty acid exposure. These findings provide further evidence for the broad spectrum of the coactivator action in mitochondrial homeostasis, positioning the PGC-1ɑ/PPARß axis as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells. ABSTRACT: Uncoupling protein 3 (UCP3) has an essential role in fatty acid metabolism and mitochondrial redox regulation in skeletal muscle. However, the molecular mechanisms involved in the expression of Ucp3 are poorly known. In the present study, we show that the peroxisome proliferator-activated receptor (PPAR)γ coactivator 1-α (PGC-1α)/PPARß axis is a crucial mediator of Ucp3 expression in skeletal muscle cells. In silico analysis of the UCP3 promoter and quantitative chromatin immunoprecipitation experiments revealed that the induction of the UCP3 transcript is mediated by the transactivation of a distal PPAR response element at the Ucp3 gene promoter by the coactivator PGC-1α. This mechanism is activated during myogenesis and during metabolic stress induced by fatty acids independent of PGC-1α protein levels. We also provide evidence that Ucp3 is essential for PGC-1α-induced oxidative capacity. Taken together, our results highlight PGC-1ɑ/PPARß as an essential component of the molecular regulation of Ucp3 gene in skeletal muscle cells.


Assuntos
Simulação por Computador , Regulação da Expressão Gênica/fisiologia , Proteína Desacopladora 3/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Biologia Computacional , Humanos , Camundongos , Desenvolvimento Muscular , Mioblastos/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Desacopladora 3/genética
14.
EBioMedicine ; 39: 436-447, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502051

RESUMO

BACKGROUND: Inflammation is the most relevant mechanism linking obesity with insulin-resistance and metabolic disease. It impacts the structure and function of tissues and organs involved in metabolism, such as the liver, pancreatic islets and the hypothalamus. Brown adipose tissue has emerged as an important component of whole body energy homeostasis, controlling caloric expenditure through the regulation of non-shivering thermogenesis. However, little is known about the impact of systemic inflammation on the structure and function of brown adipose tissue. METHODS: The relations between IL10 and mitochondria structure/function and also with thermogenesis were evaluated by bioinformatics using human and rodent data. Real-time PCR, immunoblot, fluorescence and transmission electron microscopy were employed to determine the effect of IL10 in the brown adipose tissue of wild type and IL10 knockout mice. FINDINGS: IL10 knockout mice, a model of systemic inflammation, present severe structural abnormalities of brown adipose tissue mitochondria, which are round-shaped with loss of cristae structure and increased fragmentation. IL10 deficiency leads to newborn cold intolerance and impaired UCP1-dependent brown adipose tissue mitochondrial respiration. The reduction of systemic inflammation with an anti-TNFα monoclonal antibody partially rescued the structural but not the functional abnormalities of brown adipose tissue mitochondria. Using bioinformatics analyses we show that in both humans and mice, IL10 transcripts correlate with mitochondrial lipid metabolism and caspase gene expression. INTERPRETATION: IL10 and systemic inflammation play a central role in the regulation of brown adipose tissue by controlling mitochondrial structure and function. FUND: Sao Paulo Research Foundation grant 2013/07607-8.


Assuntos
Tecido Adiposo Marrom/citologia , Inflamação/patologia , Interleucina-10/genética , Mitocôndrias/patologia , Estremecimento/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Caspases/genética , Linhagem Celular , Temperatura Baixa , Biologia Computacional/métodos , Metabolismo Energético , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína Desacopladora 1/metabolismo
15.
Cell Biol Int ; 42(6): 734-741, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29660213

RESUMO

Mitochondrial number and shape are constantly changing in response to increased energy demands. The ability to synchronize mitochondrial pathways to respond to energy fluctuations within the cell is a central aspect of mammalian homeostasis. This dynamic process depends on the coordinated activation of transcriptional complexes to promote the expression of genes encoding for mitochondrial proteins. Recent evidence has shown that the nuclear corepressor NCoR1 is an essential metabolic switch which acts on oxidative metabolism signaling. Here, we provide an overview of the emerging role of NCoR1 in the transcriptional control of energy metabolism. The identification and characterization of NCoR1 as a central, evolutionary conserved player in mitochondrial function have revealed a novel layer of metabolic control. Defining the precise mechanisms by which NCoR1 acts on energy homeostasis will ultimately contribute towards the development of novel therapies for the treatment of metabolic diseases such as obesity and type 2 diabetes.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Humanos , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Ativação Transcricional , Receptor ERRalfa Relacionado ao Estrogênio
16.
Biochem Cell Biol ; 96(5): 702-706, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29566341

RESUMO

The main goal of this study was to develop a straightforward and rapid microplate assay for measuring propidium iodide (PI) in C2C12 cells. The PI method has proven to be an efficient quantitative assay for analyzing cell viability through PI fluorescence analysis. Importantly, the protocol takes less than 30 min and the results are reproducible. C2C12 cells were exposed to an increasing concentration of palmitate for a period of 24 h to induce cell death, and the PI fluorescence increased in a concentration-dependent manner. Evaluation of mitochondrial function and the production of reactive oxygen species confirmed the deleterious effects of palmitate. Also, the microplate PI assay demonstrated high sensitivity, as indicated by the detection of modest fluctuations in cell viability in response to catalase overexpression in palmitate-treated cells. The microplate PI assay, therefore, offers an accurate method for use in in-vitro studies.


Assuntos
Bioensaio , Mitocôndrias Musculares/metabolismo , Mioblastos/metabolismo , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Camundongos , Mitocôndrias Musculares/patologia , Mioblastos/patologia
18.
J Cell Physiol ; 232(5): 958-966, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27736004

RESUMO

Mitochondria play a critical role in several cellular processes and cellular homeostasis. Mitochondrion dysfunction has been correlated with numerous metabolic diseases such as obesity and type 2 diabetes. MicroRNAs are non-coding RNAs that have emerged as key regulators of cell metabolism. The microRNAs act as central regulators of metabolic gene networks by leading to the degradation of their target messenger RNA or repression of protein translation. In addition, vesicular and non-vesicular circulating miRNAs exhibit a potential role as mediators of the cross-talk between the skeletal muscle and other tissues/organs. In this review, we will focus on the emerging knowledge of miRNAs controlling mitochondrial function and insulin signaling in skeletal muscle cells. J. Cell. Physiol. 232: 958-966, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Insulina/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas , Transdução de Sinais , Humanos
20.
J Pineal Res ; 57(2): 155-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981026

RESUMO

Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.


Assuntos
Resistência à Insulina/fisiologia , Melatonina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Ciclo do Ácido Cítrico/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA