Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(10): 1177, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690050

RESUMO

Eutrophication is a recurrent problem in water bodies, especially in tropical semiarid reservoirs. The trophic state index (TSI) is an important tool for the environmental management of aquatic systems. However, determining the TSI involves uncertainties that can affect decision-making. This study aimed to adapt and apply the fuzzy synthetic evaluation (FSE) to characterize the TSI considering the uncertainties of the reference eutrophication classification system. The Castanhão reservoir, the largest in the State of Ceará, Brazil, was taken as a case study. The results showed that (i) the uncertainty of the trophic classification system can be characterized by the triangular and trapezoidal membership functions; (ii) the result matrix associates the global trophic level with a degree of certainty, providing greater confidence to the decision maker; (iii) the eutrophication index (EI) is not an adequate tool for hierarchizing the trophic degree; and (iv) the membership level of the global trophic state generated by the FSE method is a suitable alternative to the EI. It is concluded that the proposed FSE model can be a useful tool for improving water resources management, especially in drylands.


Assuntos
Aclimatação , Monitoramento Ambiental , Estado Nutricional , Brasil , Eutrofização
2.
J Environ Manage ; 327: 116846, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455440

RESUMO

In arid and semiarid environments, evaporation is responsible for significant water losses from reservoirs. This condition is of special concern in the Brazilian Northeast region, as this is one of the most populous semiarid areas in the planet. The present study aims to assess the spatio-temporal variability of evaporation rates on the water surface of Pentecoste reservoir, located in the Brazilian semiarid region, by using both the hydrodynamic model Delft3D and a remote sensing technique (RS). While RS has already been used to evaluate the spatial distribution of evaporation rates in lakes, Delft3D was innovatively tested and applied for this purpose for the first time in this study. The calibration results showed an accurate reproduction of the water level variability (r2 of 0.997), along with a satisfactory calibration of the reservoir's thermal structure for the full water column (MAE of 0.539 °C, RMSE of 0.572 °C, and NMAE of 0.008). Curves relating monthly evaporation rates with air temperature and wind speed showed strong correlation between those variables (r2 of 0.817 for air temperature and 0.849 for wind speed). Also, the averaged evaporation rates modeled by Delft3D differed by less than 5% compared to RS. Regarding the spatial distribution results, for the wet period the evaporation patterns were similar to those of RS, while in the dry period RS provided a more stable evaporation pattern when compared to Delft3D. The innovative approach proposed in the present study can be used to better understand the evaporation dynamics in surface waters and optimize the location of damping evaporation structures, namely air diffusers, shading systems, and floating solar panels, which are important for improving water availability, not only in drylands.


Assuntos
Lagos , Tecnologia de Sensoriamento Remoto , Temperatura , Água/química , Vento
3.
J Environ Manage ; 326(Pt A): 116720, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356542

RESUMO

The dissolved oxygen (DO) level in the hypolimnion of lakes and reservoirs can reach anoxic conditions, which favor the release of phosphorus from the sediment bed to the water column. However, to estimate nutrient release from sediment is extremely important to quantify the duration of anoxia. In low latitude regions, the water-sediment layer is warmer than in temperate regions and eutrophication is usually more severe, potentially accelerating oxygen depletion and extending the anoxia period. Considering that the available equations to quantify the duration of anoxia were developed for temperate lakes, there is a need to effectively quantify this period in lakes and reservoirs located in other climate regions, such as the semiarid. In this study, the dynamics of thermal stratification was analyzed as a function of the Relative Water Column Stability coefficient (RWCS) and then correlated with DO dynamics for nineteen tropical semiarid reservoirs. RWCS values were higher during the rainy season, when anoxia duration was longer and the hypolimnion was thicker with respect to total water depth. Then, two new equations for quantification of anoxia duration, based on the equation originally developed for temperate climate, were adapted for the wet and dry seasons of the tropical semiarid region. The results showed that the proposed equations presented a better performance compared to the original one, which tends to underestimate anoxia in tropical semiarid reservoirs. This work intended to provide simple and locally adjusted tools to better quantify anoxic events and support the water quality and internal phosphorus load modeling for tropical semiarid reservoirs.


Assuntos
Eutrofização , Lagos , Humanos , Fósforo/análise , Hipóxia , Oxigênio , Monitoramento Ambiental/métodos
4.
Sci Total Environ ; 815: 152875, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995594

RESUMO

Nutrient accumulation in man-made reservoirs has been documented worldwide. Therefore, quantifying phosphorus loading and understanding its temporal dynamics in reservoirs is mandatory for sustainable water management. In this study, the Vollenweider's complete-mix phosphorus budget model was adapted to account for high water level variations, which are a common feature in tropical reservoirs, and for internal phosphorus loads. First- and zero-order kinetics were adopted to simulate phosphorus settling and release from the sediment layer, respectively, considering variable area of phosphorus release according to the height of the anoxic layer. The modeling approach was applied for a 52-months period to a 31-years-old reservoir located in the semiarid region of Brazil with 7.7 hm3 storage capacity. The simulations were supported by hydrological, meteorological and water quality data, as well as analyses of phosphorus partitioning of the reservoir bed sediment. The external phosphorus load was estimated from a relationship adjusted between inflow and phosphorus concentration, revealing an u-shaped pattern. Sedimentary phosphorus linked to iron and aluminum (PFeAl) increased over time and along the reservoir. Such measurements were used to estimate the internal phosphorus load, i.e., the yield from the bed sediments to the water column. The adaptations proposed to the model's structure improved its capacity to simulate phosphorus concentration in the water column, from "not satisfactory" to "good". We estimate that the internal phosphorus load currently accounts for 44% of the total load. It prevailed during the wet period, when reservoir stratification and hypolimnetic hypoxia were more notable, resulting in higher phosphorus concentration in the water column due to the combined effects of internal and external loadings. However, if the reservoir were 70 years older, the internal load would reach 83% of the total and the reservoir would become a source instead of a sink of phosphorus.


Assuntos
Fósforo , Poluentes Químicos da Água , Adulto , Alumínio , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Humanos , Hidrologia , Fósforo/análise , Estações do Ano , Poluentes Químicos da Água/análise , Qualidade da Água
5.
An Acad Bras Cienc ; 92(3): e20191444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206803

RESUMO

This study investigated experimentally the air entrainment and pressure drop in low-cost ejectors composed of two pieces shaped from PVC bars inserted in a 25 mm T-junction of the same material. The hydraulic behavior was very similar for the different ejector designs, and linear relationships between the water and air flow rates were fitted. However, when a rotameter was installed at the air line, the head losses resulted in a pronounced decrease (3-fold) in the air entrainment rate. The maximum air-water entrainment ratios reached by the low-cost ejectors was 1.7, while the pressure drop was about 80% of the upstream pressure. The results suggest that these ejectors have a better benefit-cost ratio than conventional ones for applications such as aeration and mixing in reactors, tanks and water bodies. Comparing our results with those obtained previously by using water both as primary and suction fluids, it was shown that under gas-liquid flow conditions the entrainment ratio was about 2.5 times larger than that for the single-phase case, while the pressure drop was about 15% higher. This was attributed to the lower density of the air and the higher dissipation of turbulent kinetic energy due to bubble-liquid interactions in the two-phase flow case.


Assuntos
Água
6.
Chemosphere ; 246: 125686, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31918079

RESUMO

This study investigated phosphorus (P) dynamics in the sediment-water interface of three distinct reservoirs located in a tropical semiarid region. Sequential chemical fractioning of the P content in the sediment and controlled experiments of the sediment-water interface were performed to understand and model the effect of the different P fractions on the exchange dynamics under anoxic and oxic scenarios. The results revealed that the older the reservoir, the higher the amount of iron and aluminum-bound P in the sediment, and that this fraction was responsible for a 10-fold increase in P concentration in the water during anoxic conditions. After aeration, P in water decreased but did not return to its initial concentration. The most recently constructed reservoir showed the lowest P concentration in the sediment and dominance of the unavailable P fraction, resulting in no potential impact on water quality. Phosphorus release and precipitation rates were well described by zero- and first-order models, respectively. Reservoirs with high P availability in the sediment, not only released more phosphorus but also presented a lower precipitation rate, resulting in higher potential damage to water quality and making some in-lake treatment techniques potentially ineffective.


Assuntos
Modelos Químicos , Fósforo/análise , Poluentes Químicos da Água/análise , Alumínio , China , Eutrofização , Sedimentos Geológicos/química , Ferro/análise , Lagos/química , Fósforo/química , Água , Qualidade da Água
7.
An Acad Bras Cienc ; 91(3): e20171022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31576911

RESUMO

Field surveys and integral modelling were carried out to study the effect of bubble plumes on the flow hydrodynamics and the time-evolution of water temperature profiles in a shallow lake with maximum depth of about 4 m. Then, model simulations were performed to verify the feasibility of destratification of ten water-supply reservoirs with capacities of 10-2,000 hm3. Finally, hydrological modelling was conducted to assess the impact of destratification on evaporation suppression and its effects on reservoir yield. The results indicate that net temperature reductions of the order of 1.0°C can be obtained, which corresponds to evaporation suppressions of approximately 10%. In turn, this resulted in increases in the regulated flow of 2-12% that could be described by a general correlation. Lastly, a simplified feasibility analysis provided an operational cost of about 1.0 US$ per cubic meter of saved water, which suggests that artificial destratification cannot be discarded as an alternative for supplementing water supply in rural water-scarce regions.


Assuntos
Lagos , Temperatura , Recursos Hídricos , Abastecimento de Água/métodos , Brasil , Hidrodinâmica , Estações do Ano , Fatores de Tempo
8.
An Acad Bras Cienc ; 91(3): e20180441, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31432901

RESUMO

This paper investigates phosphorus dynamics in a highly polluted system composed of a drainage channel followed by a shallow reservoir in the city of Fortaleza, Brazilian semiarid. During the dry season, significant non-point source loads of total phosphorus originated from residences unconnected to sewers were identified along the channel, resulting in an increasing flow rate of untreated sewage towards the reservoir. During the rainy season, as a consequence of dilution, phosphorus concentrations decreased by about 5-fold. The results also revealed that the reservoir was acting similarly to a waste stabilization pond, with phosphorus removal efficiency of about 33%. Assuming one-dimensional flow for the channel and complete mixing for the reservoir, it was possible to adjust phosphorus decay coefficients of kc = 2.2 day-1 and kr = 22.8 year-1, respectively, which were higher than their corresponding values available in the literature. This was attributed mainly to the relatively high temperatures and shallow water depths. The results also revealed an inverse dependence of kc and kr on water and wind velocity, with potential thresholds of respectively 0.3 and 5.0 m/s for resuspension of bed sediments and internal phosphorus loading.

9.
An Acad Bras Cienc ; 88(1): 411-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26840001

RESUMO

This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...