Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037436

RESUMO

Wireworms, the larvae of click beetles (Coleoptera: Elateridae), are often the target of insecticide seed treatments commonly used in corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) production in North America. Nevertheless, there is a lack of knowledge of the species, life history, and economic impact of wireworms present in these agroecosystems. An extensive survey of wireworms was conducted in corn and soybean fields in Ontario, Canada, from 2014 to 2017 to document species distribution and co-occurrence and to identify risk factors related to their abundance. In total, 4,332 specimens were collected from 1,245 different sampling records. The dominant species collected was Limonius agonus (Say) (Coleoptera: Elateridae) comprising 71.5% of the specimens. The remaining wireworm specimens were identified as Hypnoidus abbreviatus (Say), Melanotus similis (Kirby), M. cribulosus (LeConte), M. depressus (Melsheimer), M. communis (Gyllenhal), Agriotes mancus (Say), Aeolus mellillus (Say), and Hemicrepidius spp (Germar). Multiple wireworm species were found to commonly occur within the same field and the same sample. Path analysis was conducted to investigate whether site, soil, and agronomic characteristics influenced wireworm distribution and abundance. Several significant relationships were found between wireworm species and geographic factors, soil texture, and agronomic practices. The results of this survey provide critical information that can be used to improve integrated pest management of the major wireworm genera found in corn and soybean agroecosystems in Ontario.

2.
Front Plant Sci ; 14: 1292109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111882

RESUMO

In flowering plants, fertilization requires exposing maternal style channels to the external environment to capture pollen and transmit its resident sperm nuclei to eggs. This results in progeny seed. However, environmental fungal pathogens invade developing seeds through the style. We hypothesized that prior to environmental exposure, style tissue already possesses bacteria that can protect styles and seed from such pathogens. We further hypothesized that farmers have been inadvertently selecting immature styles over many generations to have such bacteria. We tested these hypotheses in maize, a wind-pollinated crop, which has unusually long styles (silks) that are invaded by the economically-important fungal pathogen Fusarium graminearum (Fg). Here, unpollinated silk-associated bacteria were cultured from a wild teosinte ancestor of maize and diverse maize landraces selected by indigenous farmers across the Americas, grown in a common Canadian field for one season. The bacteria were taxonomically classified using 16S rRNA sequencing. In total, 201 bacteria were cultured, spanning 29 genera, 63 species, and 62 unique OTUs, dominated by Pseudomonas, Pantoea and Microbacterium. These bacteria were tested for their ability to suppress Fg in vitro which identified 10 strains belonging to 6 species: Rouxiella badensis, Pantoea ananatis, Pantoea dispersa, Pseudomonas koreensis, Rahnella aquatilis, and Ewingella americana. Two anti-Fg strains were sprayed onto silks before/after Fg inoculation, resulting in ≤90% reductions in disease (Gibberella ear rot) and 70-100% reductions in associated mycotoxins (deoxynivalenol and zearalenone) in progeny seeds. These strains also protected progeny seeds post-harvest. Confocal fluorescent imaging showed that one silk bacterium (Rouxiella AS112) colonized susceptible entry points of Fg on living silks including stigmatic trichomes, wounds, and epidermal surfaces where they formed thick biofilms. Post-infection, AS112 was associated with masses of dead Fg hyphae. These results suggest that the maize style (silk) is endowed with potent bacteria from the mother plant to protect itself and progeny from Fusarium. The evidence suggests this trait may have been selected by specific indigenous peoples, though this interpretation requires further study.

3.
Pathogens ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38003787

RESUMO

Styles transmit pollen-derived sperm nuclei from pollen to ovules, but also transmit environmental pathogens. The microbiomes of styles are likely important for reproduction/disease, yet few studies exist. Whether style microbiome compositions are spatially responsive to pathogens is unknown. The maize pathogen Fusarium graminearum enters developing grain through the style (silk). We hypothesized that F. graminearum treatment shifts the cultured transmitting silk microbiome (TSM) compared to healthy silks in a distance-dependent manner. Another objective of the study was to culture microbes for future application. Bacteria were cultured from husk-covered silks of 14 F. graminearum-treated diverse maize genotypes, proximal (tip) and distal (base) to the F. graminearum inoculation site. Long-read 16S sequences from 398 isolates spanned 35 genera, 71 species, and 238 OTUs. More bacteria were cultured from F. graminearum-inoculated tips (271 isolates) versus base (127 isolates); healthy silks were balanced. F. graminearum caused a collapse in diversity of ~20-25% across multiple taxonomic levels. Some species were cultured exclusively or, more often, from F. graminearum-treated silks (e.g., Delftia acidovorans, Klebsiella aerogenes, K. grimontii, Pantoea ananatis, Stenotrophomonas pavanii). Overall, the results suggest that F. graminearum alters the TSM in a distance-dependent manner. Many isolates matched taxa that were previously identified using V4-MiSeq (core and F. graminearum-induced), but long-read sequencing clarified the taxonomy and uncovered greater diversity than was initially predicted (e.g., within Pantoea). These isolates represent the first comprehensive cultured collection from pathogen-treated maize silks to facilitate biocontrol efforts and microbial marker-assisted breeding.

4.
Front Plant Sci ; 14: 1286199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269134

RESUMO

In flowering plants, after being released from pollen grains, the male gametes use the style channel to migrate towards the ovary where they fertilize awaiting eggs. Environmental pathogens exploit the style passage, resulting in diseased progeny seed. The belief is that pollen also transmits pathogens into the style. By contrast, we hypothesized that pollen carries beneficial microbes that suppress environmental pathogens on the style passage. No prior studies have reported pollen-associated bacterial functions in any plant species. Here, bacteria were cultured from maize (corn) pollen encompassing wild ancestors and farmer-selected landraces from across the Americas, grown in a common field in Canada for one season. In total, 298 bacterial isolates were cultured, spanning 45 genera, 103 species, and 88 OTUs, dominated by Pantoea, Bacillus, Pseudomonas, Erwinia, and Microbacterium. Full-length 16S DNA-based taxonomic profiling showed that 78% of bacterial taxa from the major wild ancestor of maize (Parviglumis teosinte) were present in at least one cultivated landrace. The species names of the bacterial isolates were used to search the pathogen literature systematically; this preliminary evidence predicted that the vast majority of the pollen-associated bacteria analyzed are not maize pathogens. The pollen-associated bacteria were tested in vitro against a style-invading Fusarium pathogen shown to cause Gibberella ear rot (GER): 14 isolates inhibited this pathogen. Genome mining showed that all the anti-Fusarium bacterial species encode phzF, associated with biosynthesis of the natural fungicide, phenazine. To mimic the male gamete migration route, three pollen-associated bacterial strains were sprayed onto styles (silks), followed by Fusarium inoculation; these bacteria reduced GER symptoms and mycotoxin accumulation in progeny seed. Confocal microscopy was used to search for direct evidence that pollen-associated bacteria can defend living silks against Fusarium graminearum (Fg); bacterial strain AS541 (Kluyvera intermedia), isolated from pollen of ancestral Parviglumis, was observed to colonize the susceptible style/silk entry points of Fg (silk epidermis, trichomes, wounds). Furthermore, on style/silk tissue, AS541 colonized/aggregated on Fg hyphae, and was associated with Fg hyphal breaks. These results suggest that pollen has the potential to carry bacteria that can defend the style/silk passage against an environmental pathogen - a novel observation.

5.
Toxins (Basel) ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35878169

RESUMO

Mycotoxins are secondary metabolites produced by fungi that, depending on the type and exposure levels, can be a threat to human and animal health. When multiple mycotoxins occur together, their risk effects on human and animal health can be additive or synergistic. Little information is known about the specific types of mycotoxins or their co-occurrence in the state of Michigan and the Great Lakes region of the United States. To understand the types, incidences, severities, and frequency of co-occurrence of mycotoxins in maize grain (Zea mays L.), samples were collected from across Michigan over two years and analyzed for 20 different mycotoxins. Every sample was contaminated with at least four and six mycotoxins in 2017 and 2018, respectively. Incidence and severity of each mycotoxin varied by year and across locations. Correlations were found between mycotoxins, particularly mycotoxins produced by Fusarium spp. Environmental differences at each location played a role in which mycotoxins were present and at what levels. Overall, data from this study demonstrated that mycotoxin co-occurrence occurs at high levels in Michigan, especially with mycotoxins produced by Fusarium spp., such as deoxynivalenol.


Assuntos
Fusarium , Micotoxinas , Animais , Grão Comestível/química , Contaminação de Alimentos/análise , Fusarium/metabolismo , Humanos , Michigan , Micotoxinas/análise , Zea mays/microbiologia
6.
Pest Manag Sci ; 78(8): 3551-3563, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35607861

RESUMO

BACKGROUND: Striacosta albicosta Smith (Lepidoptera: Noctuidae) is a primary pest of corn, Zea mays L., in the Great Lakes region, causing yield loss and exacerbating mycotoxin contamination of grain. Foliar insecticides are currently used to manage S. albicosta; however, the toxicity and residual activity of these insecticides against S. albicosta are unknown. Laboratory and field bioassays were conducted to determine the susceptibility and period of in-field efficacy provided by chlorantraniliprole, lambda-cyhalothrin, spinetoram, and methoxyfenozide against S. albicosta. Bioassay data were used to simulate management scenarios. RESULTS: For all insecticides tested, 1st instars were highly susceptible to the recommended field application rates and were >3-fold more susceptible to insecticides than 3rd instars. Insecticide activity decreased after application for all insecticides, with chlorantraniliprole having the longest residual activity. In simulated management scenarios where an insecticide was applied at or below the recommended 5% egg mass threshold with additional oviposition, methoxyfenozide application resulted in greater larval survival 14 days after application (DAA) than the other insecticides tested. In scenarios where insecticides were applied 7 days before threshold was reached, all insecticides resulted in larval survival. CONCLUSION: These data demonstrate that chlorantraniliprole, lambda-cyhalothrin and spinetoram, applied in conjunction with monitoring, provide effective control of S. albicosta larvae for 10-14 days, whereas methoxyfenozide provides effective control for less than 7 days. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Ontário , Zea mays
7.
Sci Rep ; 11(1): 13215, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168223

RESUMO

In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7-11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15-26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7-25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.


Assuntos
Microbiota/genética , Seda/metabolismo , Zea mays/microbiologia , África , Fusarium/genética , Micotoxinas/genética , Pólen/microbiologia , Polinização/fisiologia , RNA Ribossômico 16S/genética
8.
ACS Omega ; 6(3): 1857-1871, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521426

RESUMO

A total of 323 paired grain and grain dust samples (particle size <1650 µm) were collected from combines at harvest (56%), on-farm bins (28%), and experimental minibins seeded with an ochratoxin A (OTA)/Penicillium verrucosum hot spots (15%) of which >98% were soft red winter wheat. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect 21 mycotoxins, including deoxynivalenol (DON) and its plant-conjugated form, deoxynivalenol 3-ß-d-glucoside (DON 3-Glc). Except for DON 3-Glc, all mycotoxin concentrations found in grain dust were higher than in grain (p < 0.0030). Pearson correlation coefficients and two-variable regression show a significant (p < 0.0001) linear relationship between the mycotoxin content in grain and that in grain dust with 19 toxins. In only five mycotoxins (DON, OTA, ochratoxin B, citrinin, and enniatin A1), more than 82% of the variation in the data is explained by the two-variable regression model. Because of its higher mean concentration and detection frequency, only DON produced a strong relationship (p < 0.0001, r 2 = 0.949) with low root-mean-square error (RMSE) (293.41 ng/g). The results suggest that modeling levels in grain based upon levels in grain dust can be used to estimate DON in grain bulk.

9.
Environ Toxicol Chem ; 39(12): 2420-2423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017070

RESUMO

The dispersion of clothianidin from treated seeds was studied in a commercial winter canola field. During planting, using a John Deere 1890 single disk air seeder, a proportion, an estimated 14.2 ± 2.9% (mean ± standard error), of the clothianidin that was applied to the seed escaped into the atmosphere from the seeder's exhaust. We suggest that this source of environmental contamination may be the main contributor that explains the off-target detection of neonicotinoid residues in soils and water near canola plantings better than movement from seed after it is placed in the soil, which is often proposed in the literature. Environ Toxicol Chem 2020;39:2420-2423. © 2020 SETAC.


Assuntos
Brassica napus/crescimento & desenvolvimento , Produção Agrícola/métodos , Poeira/análise , Poluição Ambiental/análise , Guanidinas/análise , Inseticidas/análise , Neonicotinoides/análise , Praguicidas/análise , Tiazóis/análise , Canadá , Sementes/química , Solo/química
10.
J Econ Entomol ; 113(5): 2187-2196, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32865199

RESUMO

Fusarium graminearum Schwabe (Hypocreales: Nectriaceae) and Fusarium verticillioides (Saccardo) (Hypocreales: Nectriaceae) Nirenberg infection results in accumulation of deoxynivalenol (DON), zearalenone (ZON), and fumonisin (FBs) mycotoxins in infected corn, Zea mays L. Lepidopteran insect feeding may exacerbate fungal infection by providing entry points on the ear resulting in increased mycotoxin contamination of grain. The objective of the current study was to simulate different types and severity levels (extent of injury) of lepidopteran injury to corn ears at different stages of ear development and its effect on mycotoxin accumulation in grain corn. Field experiments were conducted under conditions favorable for F. graminearum development where insect injury was simulated to corn ears and inoculated with F. graminearum. All simulated injury treatments resulted in elevated mycotoxin concentration compared with ears without simulated injury; however, the severity of injury within a treatment had little effect. Injury to kernels on the side of the ear resulted in greater DON and ZON concentration than injury to tip kernels, grazing injury applied at physiological maturity, or when no injury was simulated. Greater FBs was measured when tip kernel injury was simulated at the blister stage or when side kernel injury was simulated at milk and dent stages compared with noninjured ears, silk clipping, tip injury at milk and dent stages, or grazing injury at physiological maturity. The current study confirms that the risk of mycotoxin accumulation in the Great Lakes region is greater in the presence of ear-feeding insect pests and may differ depending on the feeding behavior of pest species.


Assuntos
Fusarium , Micotoxinas , Animais , Great Lakes Region , Poaceae , Zea mays
11.
PLoS One ; 14(4): e0214787, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947236

RESUMO

Neonicotinoids are widely used class of insecticides. Most are seed treatments and during planting active ingredient may be abraded and lost in fugitive dust. Much of this active ingredient contaminates surface waters, exposing aquatic organism to potential ill effects. This study examines concentrations of neonicotinoids appearing in tile drains and open ditches around commercial maize fields around planting time where neonicotinoid seed treatments had been used. This sample set represents surface water leaving the point of origin, for which data are sparse. Clothianidin was found more often than thiamethoxam and at higher concentrations; at a median concentration of 0.35 ng/mL in tile drain water and almost twice that (0.68 ng/mL) in ditches into which the tiles are draining after applications of 19 g/ha on seed. This concentration reveals a 40 to 50 fold dilution for neonicotinoid residues between the points where they leave the field in which they were applied and when they are found in nearby streams in a similar ecosystem. Our data support that for a no-observed-effect concentration of 0.3 ng/mL for thiamethoxam there would be between a 1.6 and 100-fold margin of safety to mayflies in most streams if fugitive dust on pneumatic planters were properly mitigated.


Assuntos
Inseticidas/análise , Neonicotinoides/análise , Poluentes Químicos da Água/análise , Animais , Poeira/análise , Ecossistema , Ephemeroptera , Guanidinas/administração & dosagem , Guanidinas/análise , Inseticidas/administração & dosagem , Inseticidas/toxicidade , Neonicotinoides/administração & dosagem , Nível de Efeito Adverso não Observado , Ontário , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Sementes , Poluentes do Solo/análise , Tiametoxam/administração & dosagem , Tiametoxam/análise , Tiazóis/administração & dosagem , Tiazóis/análise , Zea mays
12.
J Agric Food Chem ; 66(19): 4809-4819, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29681149

RESUMO

In 2010 and 2011, studies to determine the optimal timing of prothioconazole application (200 g a.i./ha) for reducing Fusarium mycotoxin accumulation in grain were conducted in controlled replicated experiments under small-plot mist-irrigated experiments and in field-scale experiments using two hybrids susceptible to F. gramineaerum infection. A significant decrease in total deoxynivalenol (DON) [DON + 15-acetyl-DON + DON 3-glucoside + 3-acetyl-DON] and zearalenone concentrations was observed when fungicide was sprayed at VT (tasseling) and R1 (silking; P < 0.01) followed by applications at V18 (18th leaf) and R2 (blister; P < 0.05) stages, corresponding to silk completely emerged and fully elongated and to silk emergence and browning, respectively. No reduction in Fusarium graminearum toxins was found after silk senescence (R3 or milk) stage. Moniliformin, fumonisins, beauvericin, enniatins, HT-2 and T-2 toxins were also found in small quantities, and no reduction was observed after treatment ( P > 0.05). Mean reduction (±s.d.) of 59 ± 20% and 57 ± 38% of total DON and zearalenone was observed at full silk elongation, respectively.


Assuntos
Produção Agrícola/métodos , Fungicidas Industriais/farmacologia , Micotoxinas/análise , Sementes/química , Triazóis/farmacologia , Zea mays/química , Fusarium/metabolismo , Micotoxinas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Fatores de Tempo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
13.
J Econ Entomol ; 111(3): 1227-1242, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29547905

RESUMO

Western bean cutworm, Striacosta albicosta (Smith; Lepidoptera: Noctuidae) has become a key pest of maize, Zea mays (L.), in Ontario, Canada which is challenging to control due to its lack of susceptibility to most Bt-maize events. Injury by S. albicosta may exacerbate Fusarium graminearum (Schwabe; Hypocreales: Nectriaceae) infection through provision of entry points on the ear. The objectives of this study were to: investigate the relationship between injury by S. albicosta and deoxynivalenol (DON) accumulation; evaluate non-Bt and Bt-maize hybrids, with and without insecticide and fungicide application; and determine optimal insecticide-fungicide application timing for reducing S. albicosta injury and DON accumulation. The incidence of injury by S. albicosta and ear rot severity were found to increase DON concentrations under favorable environmental conditions for F. graminearum infection. Incidence of S. albicosta injury was more important than severity of injury for DON accumulation which may be due to larval consumption of infected kernels. The Vip3A × Cry1Ab event provided superior protection from the incidence and severity of S. albicosta injury compared to non-Bt or Cry1F hybrids. Insecticide application to a Vip3A × Cry1Ab hybrid did not reduce injury further; however, lower severity of injury was observed for non-Bt and Cry1F hybrids when pyrethroids or diamides were applied at early VT or R1 stages. DON concentrations were reduced with application of prothioconazole fungicide tank-mixed with insecticide at late VT (before silk browning) or when insecticide was applied at early VT followed by prothioconazole at R1. The application of an insecticide/fungicide tank-mix is the most efficient approach for maize hybrids lacking high-dose insecticidal proteins against S. albicosta and F. graminearum tolerance. Results demonstrate that reducing the risk of DON accumulation requires a strategic approach to manage complex associations among S. albicosta, F. graminearum and the environment.


Assuntos
Fusarium/química , Mariposas/fisiologia , Micotoxinas/análise , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Animais , Bacillus thuringiensis/genética , Comportamento Alimentar , Cadeia Alimentar , Fungicidas Industriais/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Tricotecenos/análise
14.
Pest Manag Sci ; 74(2): 323-331, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28787098

RESUMO

BACKGROUND: Neonicotinoid-contaminated dust escaping pneumatic seeders causes exposure to non-target organisms such as pollinators. Two sources of dust have been reported: abrasion by talc which is added as seed lubricant during planting, and seed-to-seed abrasion occurring during seed handling, distribution and planting. We report a third important source that warrants remediation. Here, soil dust stirred up by planters was found to enter the vacuum air intake near seed metering devices. RESULTS: The mean quantity of dust collected from the exhaust of a commercial pneumatic planter over a number of field sites and situations was 46 g ha-1 , ranging from 5.8 to 184.2 g ha-1 . While the clothianidin concentration in exhaust dust declined with increasing quantity of dust, total clothianidin recovered increased linearly within the study parameters. Up to 2.4 g ha-1 of clothianidin was recovered from planter exhaust, representing approximately 12.6% of the active ingredient applied to seed. A similar pattern occurred in the laboratory on a single standing planter unit using diatomaceous earth as surrogate field dust. CONCLUSION: Field dust in pneumatic metering systems contributes significantly to clothianidin contamination in planter exhaust by seed abrasion. Adding diatomaceous earth as surrogate field dust to the Heubach seed dust protocol accounted for field dust abrasion and distinguished anti-abrasive properties of seed treatments. © 2017 Society of Chemical Industry.


Assuntos
Agricultura/métodos , Poeira/análise , Inseticidas/análise , Neonicotinoides/análise , Sementes , Zea mays , Poeira/prevenção & controle , Vácuo
15.
Chemosphere ; 188: 130-138, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28881240

RESUMO

Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm2, trace, trace (LOD 0.80 and 0.04 ng/cm2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD50 value of clothianidin of 44 ng/bee.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Neonicotinoides/análise , Material Particulado/análise , Resíduos de Praguicidas/análise , Animais , Abelhas/efeitos dos fármacos , Poeira/análise , Exposição Ambiental/análise , Ontário , Sementes/química , Vento
16.
PLoS One ; 12(7): e0181239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749978

RESUMO

The occurrence of P. verrucosum and ochratoxin A (OTA) were surveyed for 3 and 4 years, respectively. A total of 250 samples was collected from an average of 30 farms during the 2011, 2012, 2013 and 2014 winter seasons. Most storage bins surveyed were typically 11 m high round bins made of corrugated, galvanized steel, with flat-bottoms and conical roofs. Samples of clumped grain contained the most P. verrucosum (p<0.05, n = 10) followed by samples taken from the first load (n = 24, mean = 147±87 CFU/g) and last load (n = 17, mean = 101±77 CFU/g). Five grain samples (2.2%) tested positive for OTA, citrinin and OTB at concentrations of 14.7±7.9, 4.9±1.9 and 1.2±0.7 ng/g, with only three samples exceeding 5 ng/g. Grain samples positive for OTA were related to moisture resulting from either condensation or migrating moist warm air in the bin or areas where precipitation including snow entered the bin. Bins containing grain and clumps contaminated with OTA were studied in detail. A number of statistically-significant risk factors for OTA contamination were identified. These included 1) grain clumps accumulated around or directly under manhole openings, 2) debris and residue of old grain or grain clumps collected from the bin walls or left on storage floor and augers and 3) grain clumps accumulated around side doors. Even when grain enters storage below the 14.5% threshold of moisture, condensation and moisture migration occurs in hotspots in modern corrugated steel storage bins. Hot spots of OTA contamination were most often in areas affected by moisture migration due to inadequate aeration and exposure to moisture from precipitation or condensation. Further, we found that the nature of the condensation affects the nature and distribution of small and isolated areas with high incidence of toxin contamination and/or P. verrucosum prevalence in the grain bins examined.


Assuntos
Citrinina/metabolismo , Ocratoxinas/metabolismo , Penicillium/metabolismo , Estações do Ano , Triticum/microbiologia , Análise de Variância , Canadá , Cromatografia Líquida de Alta Pressão , Geografia , Great Lakes Region , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
Nat Microbiol ; 1: 16167, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669453

RESUMO

The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

18.
Environ Toxicol Chem ; 35(2): 295-302, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26332416

RESUMO

Neonicotinoid insecticides, especially as seed treatments, have raised concerns about environmental loading and impacts on pollinators, biodiversity, and ecosystems. The authors measured concentrations of neonicotinoid residues in the top 5 cm of soil before planting of maize (corn) in 18 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-tandem mass spectrometry with electrospray ionization. A simple calculator based on first-order kinetics, incorporating crop rotation, planting date, and seed treatment history from the subject fields, was used to estimate dissipation rate from the seed zone. The estimated half-life (the time taken for 50% of the insecticide to have dissipated by all mechanisms) based on 8 yr of crop history was 0.64 (range, 0.25-1.59) yr and 0.57 (range, 0.24-2.12) yr for 2013 and 2014, respectively. In fields where neonicotinoid residues were measured in both years, the estimated mean half-life between 2013 and 2014 was 0.4 (range, 0.27-0.6) yr. If clothianidin and thiamethoxam were used annually as a seed treatment in a typical crop rotation of maize, soybean, and winter wheat over several years, residues would plateau rather than continue to accumulate. Residues of neonicotinoid insecticides after 3 yr to 4 yr of repeated annual use tend to plateau to a mean concentration of less than 6 ng/g in agricultural soils in southwestern Ontario.


Assuntos
Colinérgicos/análise , Inseticidas/análise , Sementes/química , Poluentes do Solo/análise , Zea mays/química , Agricultura , Ecossistema , Guanidinas/análise , Meia-Vida , Neonicotinoides , Nitrocompostos/análise , Ontário , Oxazinas/análise , Resíduos de Praguicidas/análise , Tiametoxam , Tiazóis/análise
19.
Environ Toxicol Chem ; 35(2): 303-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26395849

RESUMO

Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem.


Assuntos
Colinérgicos/análise , Inseticidas/análise , Sementes/química , Poluentes do Solo/análise , Solo/química , Zea mays/química , Agricultura , Poeira/análise , Ecossistema , Guanidinas/análise , Meia-Vida , Neonicotinoides , Nitrocompostos/análise , Ontário , Oxazinas/análise , Resíduos de Praguicidas/análise , Tiametoxam , Tiazóis/análise
20.
Front Plant Sci ; 6: 805, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500660

RESUMO

Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...