Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 133059, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866269

RESUMO

Kratom, Mitragyna speciosa, is one of the most popular herbs in the West and Southeast Asia. A number of previous works have focused on bioactive alkaloids in this plant; however, non-alkaloids have never been investigated for their biological activities. Antiviral and virucidal assays of a methanol leaf extract of Kratom, M. speciosa, revealed that a crude extract displayed virucidal activity against the SARS-CoV-2. Activity-guided isolation of a methanol leaf extract of Kratom led to the identification of B-type procyanidin condensed tannins of (-)-epicatechin as virucidal compounds against SARS-CoV-2. The fraction containing condensed tannins exhibited virucidal activity with an EC50 value of 8.38 µg/mL and a selectivity index (SI) value >23.86. LC-MS/MS analysis and MALDI-TOF MS identified the structure of the virucidal compounds in Kratom as B-type procyanidin condensed tannins, while gel permeation chromatograph (GPC) revealed weight average molecular weight of 238,946 Da for high molecular-weight condensed tannins. In addition to alkaloids, (-)-epicatechin was found as a major component in the leaves of M. speciosa, but it did not have virucidal activity. Macromolecules of (-)-epicatechin, i.e., procyanidin condensed tannins, showed potent virucidal activity against SARS-CoV-2, suggesting that the high molecular weights of these polyphenols are important for virucidal activity.


Assuntos
Antivirais , Biflavonoides , Catequina , Mitragyna , Extratos Vegetais , Folhas de Planta , Proantocianidinas , SARS-CoV-2 , Catequina/química , Catequina/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Mitragyna/química , Biflavonoides/farmacologia , Biflavonoides/química , Folhas de Planta/química , Células Vero , Chlorocebus aethiops , Humanos , Animais , COVID-19/virologia , Espectrometria de Massas em Tandem , Tratamento Farmacológico da COVID-19
2.
Comput Struct Biotechnol J ; 23: 2163-2172, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827233

RESUMO

Short-chain fatty acids (SCFAs) are involved in important physiological processes such as gut health and immune response, and changes in SCFA levels can be indicative of disease. Despite the importance of SCFAs in human health and disease, reference values for fecal and plasma SCFA concentrations in healthy individuals are scarce. To address this gap in current knowledge, we developed a simple and reliable derivatization-free GC-TOFMS method for quantifying fecal and plasma SCFAs in healthy individuals. We targeted six linear- and seven branched-SCFAs, obtaining method recoveries of 73-88% and 83-134% in fecal and plasma matrices, respectively. The developed methods are simpler, faster, and more sensitive than previously published methods and are well suited for large-scale studies. Analysis of samples from 157 medically confirmed healthy individuals showed that the total SCFAs in the feces and plasma were 34.1 ± 15.3 µmol/g and 60.0 ± 45.9 µM, respectively. In fecal samples, acetic acid (Ace), propionic acid (Pro), and butanoic acid (But) were all significant, collectively accounting for 89% of the total SCFAs, whereas the only major SCFA in plasma samples was Ace, constituting of 93% of the total plasma SCFAs. There were no statistically significant differences in the total fecal and plasma SCFA concentrations between sexes or among age groups. The data revealed, however, a positive correlation for several nutrients, such as carbohydrate, fat, iron from vegetables, and water, to most of the targeted SCFAs. This is the first large-scale study to report SCFA reference intervals in the plasma and feces of healthy individuals, and thereby delivers valuable data for microbiome, metabolomics, and biomarker research.

3.
J Pharm Anal ; 14(5): 100921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799238

RESUMO

The collision cross-sections (CCS) measurement using ion mobility spectrometry (IMS) in combination with mass spectrometry (MS) offers a great opportunity to increase confidence in metabolite identification. However, owing to the lack of sensitivity and resolution, IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites (VLMs ≤ 250 Da). Here, we describe an analytical method using ultrahigh-performance liquid chromatography (UPLC) coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples. The experimental CCS values, along with mass spectral properties, were reported for the 174 metabolites. The experimental data included the mass-to-charge ratio (m/z), retention time (RT), tandem MS (MS/MS) spectra, and CCS values. Among the studied metabolites, 263 traveling wave ion mobility spectrometry (TWIMS)-derived CCS values (TWCCSN2) were reported for the first time, and more than 70% of these were CCS values of VLMs. The TWCCSN2 values were highly repeatable, with inter-day variations of <1% relative standard deviation (RSD). The developed method revealed excellent TWCCSN2 accuracy with a CCS difference (ΔCCS) within ±2% of the reported drift tube IMS (DTIMS) and TWIMS CCS values. The complexity of the urine matrix did not affect the precision of the method, as evidenced by ΔCCS within ±1.92%. According to the Metabolomics Standards Initiative, 55 urinary metabolites were identified with a confidence level of 1. Among these 55 metabolites, 53 (96%) were VLMs. The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values, which clearly increased metabolite identification confidence.

4.
J Proteome Res ; 21(10): 2481-2492, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36154058

RESUMO

The combination of ion mobility mass spectrometry (IM-MS) and chromatography is a valuable tool for identifying compounds in natural products. In this study, using an ultra-performance liquid chromatography system coupled to a high-resolution quadrupole/traveling wave ion mobility spectrometry/time-of-flight MS (UPLC-TWIMS-QTOF), we have established and validated a comprehensive TWCCSN2 and MS database for 112 plant specialized metabolites. The database included 15 compounds that were isolated and purified in-house and are not commercially available. We obtained accurate m/z, retention times, fragment ions, and TWIMS-derived CCS (TWCCSN2) values for 207 adducts (ESI+ and ESI-). The database included novel 158 TWCCSN2 values from 79 specialized metabolites. In the presence of plant matrix, the CCS measurement was reproducible and robust. Finally, we demonstrated the application of the database to extend the metabolite coverage of Ventilago harmandiana Pierre. In addition to pyranonaphthoquinones, a group of known specialized metabolites in V. harmandiana, we identified flavonoids, xanthone, naphthofuran, and protocatechuic acid for the first time through targeted analysis. Interestingly, further investigation using IM-MS of unknown features suggested the presence of organonitrogen compounds and lipid and lipid-like molecules, which is also reported for the first time. Data are available on the MassIVE (https://massive.ucsd.edu, data set identifier MSV000090213).


Assuntos
Produtos Biológicos , Rhamnaceae , Xantonas , Flavonoides , Íons/química , Lipídeos , Espectrometria de Massas/métodos
5.
iScience ; 24(11): 103355, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805802

RESUMO

The current gold standard for classifying lupus nephritis (LN) progression is a renal biopsy, which is an invasive procedure. Undergoing a series of biopsies for monitoring disease progression and treatments is unlikely suitable for patients with LN. Thus, there is an urgent need for non-invasive alternative biomarkers that can facilitate LN class diagnosis. Such biomarkers will be very useful in guiding intervention strategies to mitigate or treat patients with LN. Urine samples were collected from two independent cohorts. Patients with LN were classified into proliferative (class III/IV) and membranous (class V) by kidney histopathology. Metabolomics was performed to identify potential metabolites, which could be specific for the classification of membranous LN. The ratio of picolinic acid (Pic) to tryptophan (Trp) ([Pic/Trp] ratio) was found to be a promising candidate for LN diagnostic and membranous classification. It has high potential as an alternative biomarker for the non-invasive diagnosis of LN.

6.
J Am Soc Mass Spectrom ; 32(9): 2451-2462, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412475

RESUMO

The accurate quantification of triterpenoids in Ganoderma lucidum mushroom in the mycelium stage is challenging due to their low concentrations, interference from other possible isomers, and the complex matrix. Here, a high-resolution quadrupole-time-of-flight mass spectrometry "multiple reaction monitoring" with target enhancement (HR-QTOF-MRM) method was developed to quantify seven target triterpenoids in G. lucidum. The performance of this method was compared against an optimized QQQ-MRM method. The HR-QTOF-MRM was shown to be capable of distinguishing target triterpenoids from interferent peaks in the presence of matrices. The HR-QTOF-MRM LOD and LLOQ values were found to be one to two times lower than those derived from the QQQ-MRM method. Intraday and interday variabilities of the HR-QTOF-MRM demonstrated better reproducibility than the QQQ-MRM. In addition, excellent recoveries of the analytes ranging from 80 to 117% were achieved. Spiking experiments were carried out to verify and compare the quantitative accuracy of the two methods. The HR-QTOF-MRM method provided better percent accuracy, ranging from 84% to 99% (<3% RSD), compared with the range of 69 to 114% (<4%RSD) given by the QQQ-MRM method. These results demonstrate that the new HR-QTOF-MRM mode is able to improve sensitivity, reproducibility, and accuracy of trace level analysis of triterpenoids in the complex biological samples. The triterpenoid concentrations were in the range of nondetect to 0.06-6.72 mg/g of dried weight in fruiting body and to 0.0009-0.01 mg/g of dried weight in mycelium.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Micélio/química , Reishi/química , Triterpenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Micélio/metabolismo , Reishi/metabolismo , Reprodutibilidade dos Testes , Triterpenos/metabolismo
7.
Front Plant Sci ; 11: 602993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505413

RESUMO

Pyranonaphthoquinones (PNQs) are important structural scaffolds found in numerous natural products. Research interest in these specialized metabolites lies in their natural occurrence and therapeutic activities. Nonetheless, research progress has thus far been hindered by the lack of analytical standards and analytical methods for both qualitative and quantitative analysis. We report here that various parts of Ventilago harmandiana are rich sources of PNQs. We developed an ultraperformance liquid chromatography-electrospray ionization multiple reaction monitoring/mass spectrometry method to quantitatively determine six PNQs from leaves, root, bark, wood, and heartwood. The addition of standards in combination with a stable isotope of salicylic acid-D6 was used to overcome the matrix effect with average recovery of 82% ± 1% (n = 15). The highest concentration of the total PNQs was found in the root (11,902 µg/g dry weight), whereas the lowest concentration was found in the leaves (28 µg/g dry weight). Except for the root, PNQ-332 was found to be the major compound in all parts of V. harmandiana, accounting for ∼48% of the total PNQs quantified in this study. However, PNQ-318A was the most abundant PNQ in the root sample, accounting for 27% of the total PNQs. Finally, we provide novel MS/MS spectra of the PNQs at different collision induction energies: 10, 20, and 40 eV (POS and NEG). For structural elucidation purposes, we propose complete MS/MS fragmentation pathways of PNQs using MS/MS spectra at collision energies of 20 and 40 eV. The MS/MS spectra along with our discussion on structural elucidation of these PNQs should be very useful to the natural products community to further exploring PNQs in V. harmandiana and various other sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...