Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082152

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)-deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Carcinoma Epitelial do Ovário/dietoterapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL
2.
J Am Chem Soc ; 142(46): 19715-19721, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33141568

RESUMO

Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks. This dynamic fiber precursor (DFP) is directly drawn by pultrusion into HA fibers that display high aspect ratios, ranging from 4 to 20 µm in diameter and up to ∼10 m in length. Dynamic rheology measurements of the DFP and tensile testing of the resulting fibers reveal design considerations to tune the propensity for fiber formation and fiber mechanical properties, including the effect of polymer structure and concentration on elastic modulus, tensile strength, and ultimate strain. The materials' humidity-responsive contractile behavior, a unique property of spider silks rarely observed in synthetic materials, highlights possibilities for further biomimetic and stimulus-responsive fiber applications. This work demonstrates that chemical modification of dynamic interactions can be used to tune the mechanical properties of pultrusion-based fibers and their precursors.


Assuntos
Ácido Hialurônico/química , Polietilenoglicóis/química , Materiais Biomiméticos/química , Módulo de Elasticidade , Umidade , Reologia , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...