Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 608503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329679

RESUMO

Silicon (Si) is one of the beneficial plant mineral nutrients which is known to improve biotic and abiotic stress resilience and productivity in several crops. However, its beneficial role in underutilized or "orphan" crop such as tef [Eragrostis tef (Zucc.) Trotter] has never been studied before. In this study, we investigated the effect of Si application on tef plant performance. Plants were grown in soil with or without exogenous application of Na2SiO3 (0, 1.0, 2.0, 3.0, 4.0, and 5.0 mM), and biomass and grain yield, mineral content, chlorophyll content, plant height, and expression patterns of putative Si transporter genes were studied. Silicon application significantly increased grain yield (100%) at 3.0 mM Si, and aboveground biomass yield by 45% at 5.0 mM Si, while it had no effect on plant height. The observed increase in grain yield appears to be due to enhanced stress resilience and increased total chlorophyll content. Increasing the level of Si increased shoot Si and Na content while it significantly decreased the content of other minerals including K, Ca, Mg, P, S, Fe, and Mn in the shoot, which is likely due to the use of Na containing Si amendment. A slight decrease in grain Ca, P, S, and Mn was also observed with increasing Si treatment. The increase in Si content with increasing Si levels prompted us to analyze the expression of Si transporter genes. The tef genome contains seven putative Si transporters which showed high homology with influx and efflux Lsi transporters reported in various plant species including rice. The tef Lsi homologs were deferentially expressed between tissues (roots, leaves, nodes, and inflorescences) and in response to Si, suggesting that they may play a role in Si uptake and/or translocation. Taken together, these results show that Si application improves stress resilience and yield and regulates the expression of putative Si transporter genes. However, further study is needed to determine the physiological function of the putative Si transporters, and to study the effect of field application of Si on tef productivity.

2.
Environ Sci Technol ; 52(8): 4809-4816, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29608840

RESUMO

While root Si transporters play a role in the uptake of arsenite and organic As species dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in rice ( Oryza sativa L.), the impact of Si addition on the accumulation of DMA and MMA in reproductive tissues has not been directly evaluated, particularly in isolation from inorganic As species. Furthermore, DMA and MMA are suspected causal agents of straighthead disorder. We performed a hydroponic study to disentangle the impact of Si on accumulation of DMA and MMA in rice grain. At 5 µM, MMA was toxic to rice, regardless of Si addition, although Si significantly decreased root MMA concentrations. Plants dosed with 5 µM DMA grew well vegetatively but exhibited straighthead disorder at the lowest Si dose, and this DMA-induced yield loss reversed with increasing solution Si. Increasing Si also significantly decreased DMA concentrations in roots, straw, husk, and grain, particularly in mature plants. Si restricted grain DMA through competition for root uptake and downregulation of root Si transporters particularly at later stages of growth when Si uptake was greatest. Our finding that DMA causes straighthead disorder under low Si availability but not under high Si availability suggests Si as a straighthead management strategy.


Assuntos
Arsênio , Oryza , Ácido Cacodílico , Grão Comestível , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...