Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 1(10): 1010-1024, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34841254

RESUMO

FoxM1 activates genes that regulate S-G2-M cell-cycle progression and, when overexpressed, is associated with poor clinical outcome in multiple cancers. Here we identify FoxM1 as a tumor suppressor in mice that, through its N-terminal domain, binds to and inhibits Ect2 to limit the activity of RhoA GTPase and its effector mDia1, a catalyst of cortical actin nucleation. FoxM1 insufficiency impedes centrosome movement through excessive cortical actin polymerization, thereby causing the formation of non-perpendicular mitotic spindles that missegregate chromosomes and drive tumorigenesis in mice. Importantly, low FOXM1 expression correlates with RhoA GTPase hyperactivity in multiple human cancer types, indicating that suppression of the newly discovered Ect2-RhoAmDia1 oncogenic axis by FoxM1 is clinically relevant. Furthermore, by dissecting the domain requirements through which FoxM1 inhibits Ect2 GEF activity, we provide mechanistic insight for the development of pharmacological approaches that target protumorigenic RhoA activity.


Assuntos
Actinas , Proteína Forkhead Box M1/metabolismo , Neoplasias , Actinas/metabolismo , Animais , GTP Fosfo-Hidrolases , Camundongos , Neoplasias/genética , Transdução de Sinais
2.
Cell Res ; 29(8): 605-606, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253942
3.
Gastroenterology ; 157(1): 210-226.e12, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878468

RESUMO

BACKGROUND & AIMS: The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS: We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS: Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS: Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.


Assuntos
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Instabilidade Cromossômica/genética , Ciclina E/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Proteínas Oncogênicas/genética , Adenoma de Células Hepáticas/patologia , Adenoma de Células Hepáticas/virologia , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estruturas Cromossômicas , Dano ao DNA/genética , Replicação do DNA , Dependovirus , Fibroblastos , Hepatite B Crônica , Hepatócitos , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Estresse Oxidativo/genética , Infecções por Parvoviridae , Parvovirinae , Poliploidia , Pontos de Checagem da Fase S do Ciclo Celular
4.
Science ; 353(6307): 1549-1552, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27708105

RESUMO

Cyclin A2 activates the cyclin-dependent kinases Cdk1 and Cdk2 and is expressed at elevated levels from S phase until early mitosis. We found that mutant mice that cannot elevate cyclin A2 are chromosomally unstable and tumor-prone. Underlying the chromosomal instability is a failure to up-regulate the meiotic recombination 11 (Mre11) nuclease in S phase, which leads to impaired resolution of stalled replication forks, insufficient repair of double-stranded DNA breaks, and improper segregation of sister chromosomes. Unexpectedly, cyclin A2 controlled Mre11 abundance through a C-terminal RNA binding domain that selectively and directly binds Mre11 transcripts to mediate polysome loading and translation. These data reveal cyclin A2 as a mechanistically diverse regulator of DNA replication combining multifaceted kinase-dependent functions with a kinase-independent, RNA binding-dependent role that ensures adequate repair of common replication errors.


Assuntos
Instabilidade Cromossômica , Ciclina A2/metabolismo , Enzimas Reparadoras do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Centrossomo/metabolismo , Ciclina A2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Cinesinas/metabolismo , Proteína Homóloga a MRE11 , Meiose/genética , Camundongos , Camundongos Mutantes , Mitose/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fase S/genética
5.
Elife ; 52016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27528194

RESUMO

BubR1 is a key component of the spindle assembly checkpoint (SAC). Mutations that reduce BubR1 abundance cause aneuploidization and tumorigenesis in humans and mice, whereas BubR1 overexpression protects against these. However, how supranormal BubR1 expression exerts these beneficial physiological impacts is poorly understood. Here, we used Bub1b mutant transgenic mice to explore the role of the amino-terminal (BubR1(N)) and internal (BubR1(I)) Cdc20-binding domains of BubR1 in preventing aneuploidy and safeguarding against cancer. BubR1(N) was necessary, but not sufficient to protect against aneuploidy and cancer. In contrast, BubR1 lacking the internal Cdc20-binding domain provided protection against both, which coincided with improved microtubule-kinetochore attachment error correction and SAC activity. Maximal SAC reinforcement occurred when both the Phe- and D-box of BubR1(I) were disrupted. Thus, while under- or overexpression of most mitotic regulators impairs chromosome segregation fidelity, certain manipulations of BubR1 can positively impact this process and therefore be therapeutically exploited.


Assuntos
Aneuploidia , Carcinogênese , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Humanos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...