Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642550

RESUMO

Articular cartilage is a structure lack of vascular distribution. Once the cartilage is injured or diseased, it is unable to regenerate by itself. Surgical treatments do not effectively heal defects in articular cartilage. Tissue engineering is the most potential solution to this problem. In this study, methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and hydroxyapatite at a weight ratio of 2:1 were mixed via fused deposition modeling (FDM) layer by layer to form a solid scaffold. The scaffolds were further infiltrated with glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of Transforming Growth Factor-ß1 and photo cross-linked on top of the scaffolds. An in vivo test was performed on the knees of Lanyu miniature pigs for a period of 12 months. The healing process of the osteochondral defects was followed by computer tomography (CT). The defect was fully covered with regenerated tissues in the control pig, while different tissues were grown in the defect of knee of the experimental pig. In the gross anatomy of the cross section, the scaffold remained in the subchondral location, while surface cartilage was regenerated. The cross section of the knees of both the control and experimental pigs were subjected to hematoxylin and eosin staining. The cartilage of the knee in the experimental pig was partially matured, e.g., few chondrocyte cells were enclosed in the lacunae. In the knee of the control pig, the defect was fully grown with fibrocartilage. In another in vivo experiment in a rabbit and a pig, the composite of the TGF-ß1-loaded hydrogel and scaffolds was found to regenerate hyaline cartilage. However, scaffolds that remain in the subchondral lesion potentially delay the healing process. Therefore, the structural design of the scaffold should be reconsidered to match the regeneration process of both cartilage and subchondral bone.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/lesões , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Durapatita/química , Poliésteres/química , Suínos , Porco Miniatura , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/química
2.
Polymers (Basel) ; 9(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970861

RESUMO

The aim of this study was to report the fabrication of porous scaffolds with pre-designed internal pores using a fused deposition modeling (FDM) method. Polycaprolactone (PCL) is a suitable material for the FDM method due to the fact it can be melted and has adequate flexural modulus and strength to be formed into a filament. In our study, the filaments of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) having terminal groups of carboxylic acid were deposited layer by layer. Raw materials having a weight ratio of hydroxyapatite (HAp) to polymer of 1:2 was used for FDM. To promote cell adhesion, amino groups of the Arg-Gly-Asp(RGD) peptide were condensed with the carboxylic groups on the surface of the fabricated scaffold. Then the scaffold was infiltrated with hydrogel of glycidyl methacrylate hyaluronic acid loading with 10 ng/mL of TGF-ß1 and photo cross-linked on the top of the scaffolds. Serious tests of mechanical and biological properties were performed in vitro. HAp was found to significantly increase the compressive strength of the porous scaffolds. Among three orientations of the filaments, the lay down pattern 0°/90° scaffolds exhibited the highest compressive strength. Fluorescent staining of the cytoskeleton found that the osteoblast-like cells and stem cells well spread on RGD-modified PEG-PCL film indicating a favorable surface for the proliferation of cells. An in vivo test was performed on rabbit knee. The histological sections indicated that the bone and cartilage defects produced in the knees were fully healed 12 weeks after the implantation of the TGF-ß1 loaded hydrogel and scaffolds, and regenerated cartilage was hyaline cartilage as indicated by alcian blue and periodic acid-schiff double staining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...