Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202400603, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613137

RESUMO

The transition from disorder to order and structural transformation are distinctive metal-organic framework (MOF) features. How to adapt or control both behaviors in MOF has rarely been studied. In this case, we demonstrate that our successful synthesis of [Al(OH)(PDA)]n (AlPDA-53-DEF, AlPDA-53-H, and AlPDA-68) with H2PDA=4,4'-[1,4-phenylenebis(ethyne-2,1-diyl)]-di benzoic acid has shown the intricate world of Aluminum Metal-Organic Frameworks (Al-MOFs). It offers profound insights into defect structures to order and transformations. AlPDA-53-DEF, in particular, revealed a fascinating interplay of various pore sizes within both micro and mesoporous regions, unveiling a unique lattice rearrangement phenomenon upon solvent desorption. Defects and disorders emerged as crucial impacts of transforming AlPDA-53-DEF, with its initially imperfect crystallinity, into the highly crystalline, hierarchically porous AlPDA-53-H.

2.
Inorg Chem ; 62(35): 14158-14162, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37594928

RESUMO

The objective of this research is to create monolithic heterogeneous catalysts (cordierite@MOFs) through the application of metal-organic framework (MOF) materials onto honeycomb cordierite for CO2 cycloaddition. By employing monolithic catalysts instead of powdered catalysts, the recycling and reusability of catalysts during postreaction treatment can be significantly improved.

3.
Bioconjug Chem ; 34(9): 1688-1703, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37552618

RESUMO

The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.


Assuntos
Diabetes Mellitus Experimental , Estruturas Metalorgânicas , Camundongos , Animais , Estruturas Metalorgânicas/uso terapêutico , Cobre/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Zinco/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
4.
J Mater Chem B ; 11(43): 10362-10368, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37465898

RESUMO

Finding materials in biosensing that balance enzyme-like reactivity, stability, and affordability is essential for the future. Because of their unique peroxidase properties, including variable pore size, surface area, and Lewis acid active sites, iron-based metal-organic frameworks (MOFs) have evolved as viable possibilities. In this study, we constructed a Fe-MOF and tested its peroxidase-like activity and responsiveness toward H2O2 colorimetric techniques. Using encapsulation, we incorporated glucose oxidase into the ZIF-90 PVP MOF and conducted a sequential reaction with the Fe-MOF to detect glucose. The results showed better peroxidase catalytic activity of the MIL-88B(Fe) (1,4-NDC) MOF and similar secondary building unit (SBU) Fe-MOFs were studied in other peroxidase nanozyme studies. When combined with an enzyme-encapsulating ZIF-90 PVP MOF, they could be sequentially employed for glucose detection purposes. This study highlights the potential of nanozymes as an alternative to natural enzymes, with promising applications in biosensing and beyond.


Assuntos
Ferro , Estruturas Metalorgânicas , Ferro/química , Peroxidase , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/química , Peroxidases , Glucose
5.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903476

RESUMO

Eight coordination polymers constructed from divalent metal salts, N,N'-bis(pyridin-3-ylmethyl)terephthalamide (L), and various dicarboxylic acids are reported, affording [Co(L)(5-ter-IPA)(H2O)2]n (5-tert-H2IPA = 5-tert-butylisophthalic acid), 1, {[Co(L)(5-NO2-IPA)]⋅2H2O}n (5-NO2-H2IPA = 5-nitroisophthalic acid), 2, {[Co(L)0.5(5-NH2-IPA)]⋅MeOH}n (5-NH2-H2IPA = 5-aminoisophthalic acid), 3, {[Co(L)(MBA)]⋅2H2O}n (H2MBA = diphenylmethane-4,4'-dicarboxylic acid), 4, {[Co(L)(SDA)]⋅H2O}n (H2SDA = 4,4-sulfonyldibenzoic acid), 5, {[Co2(L)2(1,4-NDC)2(H2O)2]⋅5H2O}n (1,4-H2NDC = naphthalene-1,4-dicarboxylic acid), 6, {[Cd(L)(1,4-NDC)(H2O)]⋅2H2O}n, 7, and {[Zn2(L)2(1,4-NDC)2]⋅2H2O}n, 8, which were structurally characterized by using single-crystal X-ray diffraction. The structural types of 1-8 are subject to the metal and ligand identities, showing a 2D layer with the hcb, a 3D framework with the pcu, a 2D layer with the sql, a polycatenation of 2-fold interpenetrated 2D layer with the sql, a 2-fold interpenetrated 2D layer with the 2,6L1, a 3D framework with the cds, a 2D layer with the 2,4L1, and a 2D layer with the (102⋅12)(10)2(4⋅10⋅124)(4) topologies, respectively. The investigation on the photodegradation of methylene blue (MB) by using complexes 1-3 reveals that the degradation efficiency may increase with increasing surface areas.

6.
Talanta ; 255: 124206, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563506

RESUMO

Oxidase-mimicking (catechol oxidase/laccase) nanozymes provide outstanding specificity in the detection of epinephrine (Epi) for the assessment of pheochromocytoma; however, epinephrine (Epi) and norepinephrine (NE) co-existing in the same systems will reduce the selectivity of the biosensor. In the current study, we synthesized copper-based coordination polymer (Cu-CP) nanozymes capable of accelerating the oxidation of Epi with high specificity. Furthermore, the Cu-CP is able to detect Epi over a wide linear range of 0.5-100 µM with a low detection limit of 0.36 µM while providing excellent stability and recyclability. Furthermore, we employed colorimetric and fluorescence signals for sequential detection of the coexistence of Epi and NE for use in tracking the treatment outcomes of patients with pheochromocytoma. Experiments using artificial urine further confirmed the efficacy of the proposed system.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Cobre , Feocromocitoma/diagnóstico , Norepinefrina , Epinefrina , Biomarcadores , Neoplasias das Glândulas Suprarrenais/diagnóstico , Colorimetria
7.
Anal Chim Acta ; 1227: 340335, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089303

RESUMO

Hexavalent chromium ions (Cr(VI)) are highly toxic and prone to bioaccumulation in the natural environment. This study sought to develop a facile and cost-effective approach to on-site monitoring Cr(VI) content in diverse environmental samples. We synthesized copper-based MOF nanozymes (Cu-PyC MOF) and developed a simple colorimetric method by which to detect Cr(VI) on paper-based devices. The colorimetric product is obtained using the MOF nanozyme as a catalyst, Cr(VI) as an oxidant, 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate to produce a bluish-green color observable by the naked eye or a UV-visible spectrophotometer. After Cu-PyC MOF was suspended in an acidic buffer, it remained stable and showed oxidoreductase-like catalytic activity, which in turn boosts Cr(VI) reduction. The proposed scheme enables the detection of Cr(VI) within 3 min over a linear range of 0.5-50 µM with a low detection limit of 0.051 µM. The proposed nanozyme-based colorimetric method exhibits excellent reusability and selectivity over other 27 interference ions and can be used in real sample analysis.


Assuntos
Colorimetria , Oxirredutases , Cromo/análise , Colorimetria/métodos , Íons
8.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887209

RESUMO

Hg(II) halide complexes [HgCl2] 2L1 [L1 = N,N'-bis(3-pyridyl)bicyclo(2,2,2,)oct-7-ene-2,3,5,6-tetracarboxylic diamide), 1, [HgBr2(L1)]n, 2, [HgI2(L1)], 3, [Hg2X4(L2)2] [X = Cl, 4, Br, 5, and I, 6; L2 = N,N'-bis(4-pyridylmethyl)bicyclo(2,2,2,)oct-7-ene-2,3,5,6-tetracarboxylic diamide] and {[HgX2(L3)]⋅H2O}n [X = Cl, 7, Br, 8 and I, 9; L3 = 4,4'-oxybis(N-(pyridine-3-yl)benzamide)] are reported and structurally characterized using single-crystal X-ray diffraction analyses. The linear HgCl2 units of complex 1 are interlinked by the L1 ligands through Hg---N and Hg---O interactions, resulting in 1D supramolecular chains. Complex 2 shows 1D zigzag chains interlinked through the Br---Br interactions to form 1D looped supramolecular chains, while the mononuclear [HgI2L2] molecules of 3 are interlinked through Hg---O and I---I interactions, forming 2D supramolecular layers. Complexes 4-6 are isomorphous dinuclear metallocycles, and 7-9 form isomorphous 1D zigzag chains. The roles of the ligand type and the halide anion in determining the structural diversity of 1-9 is discussed and the luminescent properties of 7-9 evaluated. Complexes 7-9 manifest stability in aqueous environments. Moreover, complexes 7 and 8 show good sensing towards Fe3+ ions with low detection limits and good reusability up to five cycles, revealing that the Hg-X---Fe3+ (X = Cl and Br) interaction may have an important role in determining the quenching effect of 7 and 8.


Assuntos
Amidas , Mercúrio , Cristalografia por Raios X , Diamida , Ligantes , Metais
9.
Langmuir ; 38(14): 4415-4424, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35357172

RESUMO

A quantitative study of the synthesis of metal-organic framework (MOF) colloids via a solvothermal growth process was demonstrated using electrospray-differential mobility analysis (ES-DMA), a gas-phase electrophoresis approach. HKUST-1, a copper-based MOF (Cu-MOF), was selected as the representative MOF of the study. The effects of the synthetic parameters, including ligand concentration (CBTC), synthetic temperature (Ts), and synthetic time (ts) versus material properties of the Cu-MOF, were successfully characterized based on the mobility size distributions measured by ES-DMA. The results show that the mobility size of Cu-MOF was proportional to Ts, ts, and CBTC during the solvothermal growth. X-ray diffraction and Brunauer-Emmett-Teller analyses were employed complementarily to the ES-DMA, confirming that the increase in mobility size of Cu-MOF was correlated to the increase in crystallinity (i.e., larger specific surface area and crystallite size). The results of CO2 pulse adsorption show that the synthesized Cu-MOF possessed a good CO2 adsorption ability under 1 atm, 35 °C, and the cumulative amount of CO2 uptake was proportional to the measured mobility size of Cu-MOF. The work provides a proof of concept for the controlled synthesis of MOF colloids with the support of gas-phase electrophoretic analysis, and the quantitative methodology is useful for the development of MOF-based applications in CO2 capture and utilization.

10.
Inorg Chem ; 61(3): 1327-1334, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34994560

RESUMO

Titanium phosphorus oxides (TiPOs) are promising energy-conversion materials, but most are of tetravalent titanium (TiIV), with the trivalent TiIIIPOs less explored because of instability and obstacles in synthesis. In this study, we used a simple synthetic strategy and prepared three new TiIIIPOs with different phosphorus oxoanions: the phosphate Ca2Ti(HPO4)2(PO4)·H2O (1), the phosphite CaTi2(H2O)(HPO3)4·H2O (2), and the hypophosphite Ti(H2PO2)3 (3). Each possesses different structures in one, two, and three dimensions, yet they are related to one another because of their infinite chains. Compound 1 exhibits proton-coupled electron transfer (PCET) reactivity in a solid state, losing one proton from its own HPO4 in oxidation to yield Ca2Ti(HPO4)(PO4)2·H2O (designated as 1O), while compound 2 also exhibits PCET reactivity in which the octahedral core [TiIII(H2O)]3+ gives off two protons to become a titanyl unit [TiIV═O]2+ under oxidation, yielding CaTi2O(HPO3)4·H2O (2O). Both 1O and 2O retain their original frameworks from before oxidation, but there are some changes in the hydrogen and Ti-O bonds that affect the IR absorption and powder X-ray diffraction patterns. Compound 3 represents the first titanium hypophosphite, and two polymorphs were discovered that show structures related to 1 and 2. This work demonstrates a simple strategy that is effective for preparing titanium(III) compounds in a pure phase; further, new findings in the pathways of solid-state PCET reactions promote a greater understanding of the self-sustaining oxidation behavior for TiIIIPO solid materials.

11.
ACS Appl Mater Interfaces ; 14(3): 3849-3863, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019259

RESUMO

Nitric oxide (NO) is an endogenous gasotransmitter regulating alternative physiological processes in the cardiovascular system. To achieve translational application of NO, continued efforts are made on the development of orally active NO prodrugs for long-term treatment of chronic cardiovascular diseases. Herein, immobilization of NO-delivery [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-2) onto MIL-88B, a metal-organic framework (MOF) consisting of biocompatible Fe3+ and 1,4-benzenedicarboxylate (BDC), was performed to prepare a DNIC@MOF microrod for enhanced oral delivery of NO. In simulated gastric fluid, protonation of the BDC linker in DNIC@MOF initiates its transformation into a DNIC@tMOF microrod, which consisted of DNIC-2 well dispersed and confined within the BDC-based framework. Moreover, subsequent deprotonation of the BDC-based framework in DNIC@tMOF under simulated intestinal conditions promotes the release of DNIC-2 and NO. Of importance, this discovery of transformer-like DNIC@MOF provides a parallel insight into its stepwise transformation into DNIC@tMOF in the stomach followed by subsequent conversion into molecular DNIC-2 in the small intestine and release of NO in the bloodstream of mice. In comparison with acid-sensitive DNIC-2, oral administration of DNIC@MOF results in a 2.2-fold increase in the oral bioavailability of NO to 65.7% in mice and an effective reduction of systolic blood pressure (SBP) to a ΔSBP of 60.9 ± 4.7 mmHg in spontaneously hypertensive rats for 12 h.


Assuntos
Materiais Biocompatíveis/farmacologia , Estruturas Metalorgânicas/farmacologia , Óxido Nítrico/química , Pró-Fármacos/farmacologia , Administração Oral , Animais , Materiais Biocompatíveis/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Eletrodos , Concentração de Íons de Hidrogênio , Teste de Materiais , Estruturas Metalorgânicas/administração & dosagem , Camundongos , Óxido Nítrico/administração & dosagem , Tamanho da Partícula , Pró-Fármacos/química , Propriedades de Superfície
12.
Inorg Chem ; 61(6): 2724-2732, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089029

RESUMO

A SiO2@MOF core-shell microsphere for environmentally friendly applications was introduced in this study. Several types of metal-organic framework core-shell microspheres were successfully synthesized. To achieve high stability and favorable catalytic performance, modification and coating methods were necessary for optimization. The improved SiO2@MOF core-shell microspheres were used in the cycloaddition reaction of carbon dioxide and propylene oxide. Dispersion ability was enhanced by the addition of core-shell microspheres, which also produced high catalytic activity. Accompanied with tetrabutylammonium bromide as a co-catalyst, SiO2@ZIF-67 had a maximum conversion of 97%, and the results revealed that SiO2@ZIF-67 could be used for 5 reaction cycles while maintaining high catalytic performance. This recycling catalyst was also reacted with a series of terminal epoxides to form corresponding cyclic carbonates with high conversion rates, indicating that SiO2@MOF core-shell microspheres exhibit promise in the field of catalysis.

13.
ACS Appl Mater Interfaces ; 14(5): 6343-6357, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080366

RESUMO

Nitric oxide (NO) is an essential endogenous signaling molecule regulating multifaceted physiological functions in the (cardio)vascular, neuronal, and immune systems. Due to the short half-life and location-/concentration-dependent physiological function of NO, translational application of NO as a novel therapeutic approach, however, awaits a strategy for spatiotemporal control on the delivery of NO. Inspired by the magnetic hyperthermia and magneto-triggered drug release featured by Fe3O4 conjugates, in this study, we aim to develop a magnetic responsive NO-release material (MagNORM) featuring dual NO-release phases, namely, burst and steady release, for the selective activation of NO-related physiology and treatment of bacteria-infected cutaneous wound. After conjugation of NO-delivery [Fe(µ-S-thioglycerol)(NO)2]2 with a metal-organic framework (MOF)-derived porous Fe3O4@C, encapsulation of obtained conjugates within the thermo-responsive poly(lactic-co-glycolic acid) (PLGA) microsphere completes the assembly of MagNORM. Through continuous/pulsatile/no application of the alternating magnetic field (AMF) to MagNORM, moreover, burst/intermittent/slow release of NO from MagNORM demonstrates the AMF as an ON/OFF switch for temporal control on the delivery of NO. Under continuous application of the AMF, in particular, burst release of NO from MagNORM triggers an effective anti-bacterial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). In addition to the magneto-triggered bactericidal effect of MagNORM against E. coli-infected cutaneous wound in mice, of importance, steady release of NO from MagNORM without the AMF promotes the subsequent collagen formation and wound healing in mice.


Assuntos
Óxido Ferroso-Férrico/química , Campos Magnéticos , Estruturas Metalorgânicas/química , Microesferas , Óxido Nítrico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
14.
Chem Commun (Camb) ; 58(4): 569-572, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34913054

RESUMO

In this study, we report on a bi-metal organic framework, MOF-919 (Fe-Cu), capable of bifunctional-enzyme mimicking activity with oxidase- and peroxidase-like activities. The catalytic activities were examined by using o-phenylenediamine (OPD) as a chromogenic substrate to study oxidase- and peroxidase-like mimetics. Based on our findings, we developed a simple epinephrine colorimetric biosensor with a broad linear range (1-100 µM) and a low detection limit (0.298 µM). This approach provides evidence for transition metal-based pristine bi-metallic MOFs capable of reproducing both oxidase-peroxidase properties, which could be applied as new nanosensors.


Assuntos
Cobre/metabolismo , Ferro/metabolismo , Estruturas Metalorgânicas/metabolismo , Oxirredutases/metabolismo , Peroxidase/metabolismo , Fenilenodiaminas/análise , Biocatálise , Técnicas Biossensoriais , Colorimetria , Cobre/química , Ferro/química , Estruturas Metalorgânicas/química , Estrutura Molecular , Oxirredutases/química , Peroxidase/química , Fenilenodiaminas/metabolismo
15.
ACS Appl Mater Interfaces ; 13(40): 47465-47477, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592812

RESUMO

Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_µm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_µm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.

16.
ACS Omega ; 6(38): 24382-24396, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604621

RESUMO

The phenolic natural product magnolol exhibits neuroprotective properties through ß-amyloid toxicity in PC-12 cells and ameliorative effects against cognitive deficits in a TgCRND8 transgenic mice model. Its bioavailability and blood-brain barrier crossing ability have been significantly improved using the metal-organic framework (MOF) UiO-66(Zr) as a drug delivery system (DDS). To investigate the neuroprotective effects of the Zr-based DDS, magnolol and magnolol-loaded-UiO-66(Zr) (Mag@UiO-66(Zr)) were evaluated for inhibitory activity against ß-secretase and AlCl3-induced neurotoxicity. Due to the moderate inhibition observed for magnolol in vitro, in silico binding studies were explored against ß-secretase along with 11 enzymes known to affect Alzheimer's disease (AD). Favorable binding energies against CDK2, CKD5, MARK, and phosphodiesterase 3B (PDE3B) and dynamically stable complexes were noted through molecular docking and molecular dynamic simulation experiments, respectively. The magnolol-loaded DDS UiO-66(Zr) also showed enhanced neuroprotective activity against two pathological indices, namely, neutrophil infiltration and apoptotic neurons, in addition to damage reversal compared to magnolol. Thus, MOFs are promising drug delivery platforms for poorly bioavailable drugs.

17.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34577919

RESUMO

Reactions of divalent metal salts with 4,4-oxybis(N-(pyridine-4-yl)-benzamide), L, and naphthalene-1,4-dicarboxylic acid (1,4-H2NDC) in various solvents gave [Zn(L)(1,4-NDC)·H2O]n, 1, [Cd(L)(1,4-NDC)(H2O)·MeOH]n, 2, and [Co(L)(1,4-NDC)(H2O)0.5·MeOH]n, 3, which have been structurally characterized. Complexes 1-3 show eight-fold interpenetrating frameworks with the dia topology, which exhibit porosities substantiated by CO2 adsorption, whereas 1 and 2 manifest stability in aqueous environments and show high selectivity toward sensing of mesitylene molecules and Fe3+ ions with low detection limits and good reusability up to five cycles.

18.
Membranes (Basel) ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071537

RESUMO

Zeolitic imidazole framework (ZIF-8) was incorporated into poly(ether-block-amide) (Pebax-1657) in differing ratios to prepare mixed matrix membranes (MMMs) for gas separation. As ZIF-8 loading is increased, gas separation selectivity also gradually increases. For economic considerations, the proportion of the increase in selectivity to the amount of MOF loaded per unit was calculated. The results show that mixing 5% MOF gives the best unit performance. With this, a variety of MOFs (UiO-66, UiO-66-NH2, A520, MIL-68(Al) and MIL-100(Fe)) were mixed with PEBAX at 5 loading to prepare MMMs. In this work, metal-organic frameworks (MOFs) were processed using the dry-free method, where in the synthesized MOF was not dried prior to incorporation. The gas separation performance test carried out shows the highest separation performance was exhibited by P-UiO-66, wherein the CO2/N2 gas selectivity was 85.94, and the permeability was 189.77 (Barrer), which was higher than Robeson's Upper bound in 2008, and obtained a high permeability and selectivity among mixed matrix membranes. In the preparation of high quality MMMs for gas separation, details regarding the interface phenomenon were assessed.

19.
Chem Commun (Camb) ; 57(53): 6542-6545, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109342

RESUMO

A novel titanium(iii) phosphite with intriguing polymorphism and solid-state proton-coupled electron transfer (PCET) oxidation is presented. The polymorphs show structure-dependent PCET reactivity, interpretable by proton distribution in channels. Combined with subsequent photoreduction, the redox cycle initiated with TiIII can produce H2 and transform organics.

20.
Materials (Basel) ; 14(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670380

RESUMO

This work presents an efficient and facile strategy to prepare an α-amylase bioreactor. As enzymes are quite large to be immobilized inside metal-organic frameworks (MOFs), the tertiary and quaternary structures of α-amylase were first disrupted using a combination of urea, dithiothreitol (DTT), and iodoacetamide (IAA). After losing its tertiary structure, the unfolded proteins can now penetrate into the microporous MOFs, affording fragmented α-amylase@MOF bioreactors. Among the different MOFs evaluated, UiO-66 gave the most promising potential due to the size-matching effect of the α-helix of the fragmented α-amylase with the pore size of UiO-66. The prepared bioreactor exhibited high yields of small carbohydrate (maltose) even when reused up to 15 times (>80% conversion).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...