Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447892

RESUMO

Miniature sensors are key components for applications in the Internet of Things (IoT), wireless sensor networks, autonomous vehicles, smart cities, and smart manufacturing. As a miniature and self-powered magnetic sensor, the Wiegand sensor possesses advantageous traits including changing-rate-independent output, low cost, and remarkable repeatability and reliability. A typical Wiegand sensor requires hard magnetic pole pieces that provide external fields for triggering voltage outputs that are called Wiegand pulses. However, the wire-shaped sensing element of Wiegand sensors is the critical issue that limits the design, selection, and adoption of the external triggering magnets. Currently, the widely used pole piece materials are rare-earth magnets. However, adopting rare-earth magnets brings strong stray fields, causing an electromagnetic interference (EMI) problem. In this study, patterned CoNiP hard magnets were electrodeposited on flexible substrates through microfabrication. Origami magnetization was utilized to control the resultant stray fields and thus the pole piece of CoNiP magnets can successfully trigger the output of the Wiegand pulse. In comparison, the output voltage of the triggered pulse acquired through the patterned CoNiP magnets is comparable to that acquired by using the rare-earth magnets. Furthermore, both the volume (and hence the weight) of the Wiegand sensor and the EMI issue can be significantly reduced and mitigated, respectively, by the CoNiP magnets.


Assuntos
Magnetismo , Imãs , Reprodutibilidade dos Testes
2.
Nanotechnology ; 33(15)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34972097

RESUMO

In realistic applications, silver nanowires (AgNWs) are encapsulated in optoelectrical devices to function as transparent conductors and electrodes. Environmental stressors along with the essential electrical stress are inevitably harmful to the AgNWs inside the devices. Herein, to investigate the degradation behavior discrepancy between materials-level and device-level tests, we adopted pseudo-module to mimic the encapsulation. The pseudo-module allows the application of electrical stress and facilitates the interim specimen access for materials characterization through assembly-disassembly. Indoor accelerated and outdoor weathering tests with applied electrical stress to the pseudo-module encapsulated AgNW networks were performed. The impaired optoelectrical properties and morphological changes of AgNWs due to multiple or individual stressor(s) are investigated. Results indicate UVA exposure at elevated temperature coupled with electrical stress is responsible for the electrical failure of AgNW networks. Sulfidation that depresses optical transparency of AgNW networks is prone to occur at lower temperature. This work provides unambiguous degradation behaviors of AgNWs inside encapsulants, helping to improve the design of AgNWs related optoelectrical devices in the applications of solar irradiation environments.

3.
Nanotechnology ; 31(21): 215705, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32015222

RESUMO

Silver nanowire (AgNW) transparent electrode inevitably encounters ultraviolet (UV) irradiation from the environment, leading to stability and durability problems when in operation. Since UVA is the most abundant UV band and highly penetrating to AgNW related optoelectrical devices, it is crucial to understand the UVA damage caused to AgNWs. In this study, transparent electrodes composed of pristine AgNWs and glass substrates were manufactured with optimized processing parameters, and then used as model samples for aging tests. UVA exposure was conducted at elevated temperatures including 45 °C, 60 °C and 75 °C at 12 ± 5.5% relative humidity (RH) conditions. Comparative aging tests using conditions of damp heat (85 °C/85% RH) and 105 °C without UV (dark conditions) were also conducted. The relationship between optoelectrical property degradation, morphological changes and photo-corrosion was discussed. Under UVA exposure, the sheet resistance of electrodes increased gradually in an induction period before an abrupt change occurred. A nominal sheet resistance value of 200 Ω/sq was considered as a predestined failure of electrical property. It took 16, 24 and 60 h for UVA exposure at 75 °C, 60 °C and 45 °C, respectively, and 288 h by damp heat aging to degrade to the same status of predestined failure. Aging results of dark conditions indicated no degradation effect on AgNWs for 126 d aging. Moisture caused a different mechanism in damaging the capping agents on AgNWs. Nanocubes of silver chloride and sodium chloride were prone to precipitate at higher aging temperature such as 75 °C with UVA exposure. Sulfidation accounted for deterioration of optical transmittance, and occurred significantly at 45 °C with UVA irradiation and under damp heat conditions. The synergistic aging effect of UVA irradiance at elevated temperature on AgNW degradation has been unambiguously demonstrated. The results of this study provide guidelines for the design of optoelectronic devices when utilizing AgNW transparent electrodes.

4.
Langmuir ; 24(23): 13627-31, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18991418

RESUMO

The effect of residual surface compression on the surface evolution of solid thin films was analyzed. Analytical relation was derived among the apparent surface stress, the spatial frequency of the surface modulation, and the film thickness. Using this relationship, we calculated the dependence of the apparent surface stress on the film thickness from the experimental results of the polymer resist coated on glass slide. The magnitude of the apparent surface stress decreased with the reduction in the film thickness, and it approached a constant of 0.46 kN/m as the thickness of the films approached zero. The result is possibly applied to nanoimprint technology.


Assuntos
Membranas Artificiais , Elasticidade , Vidro/química , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...